Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, TextStreamer | |
import transformers | |
import torch | |
from huggingface_hub import login | |
import os | |
import logging | |
login(token = os.getenv('HF_TOKEN')) | |
class Model(torch.nn.Module): | |
number_of_models = 0 | |
__model_list__ = [ | |
"Qwen/Qwen2-1.5B-Instruct", | |
"lmsys/vicuna-7b-v1.5", | |
"google-t5/t5-large", | |
"mistralai/Mistral-7B-Instruct-v0.1", | |
"meta-llama/Meta-Llama-3.1-8B-Instruct" | |
] | |
def __init__(self, model_name="Qwen/Qwen2-1.5B-Instruct") -> None: | |
super(Model, self).__init__() | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.name = model_name | |
logging.info(f'start loading model {self.name}') | |
if model_name == "google-t5/t5-large": | |
# For T5 or any other Seq2Seq model | |
self.model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_name, torch_dtype=torch.bfloat16, device_map="auto" | |
) | |
else: | |
# For GPT-like models or other causal language models | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=torch.bfloat16, device_map="auto" | |
) | |
logging.info(f'Loaded model {self.name}') | |
self.update() | |
def update(cls): | |
cls.number_of_models += 1 | |
def return_mode_name(self): | |
return self.name | |
def return_tokenizer(self): | |
return self.tokenizer | |
def return_model(self): | |
return self.pipeline | |
def gen(self, content_list, temp=0.1, max_length=500, streaming=False): | |
# Convert list of texts to input IDs | |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device) | |
if streaming: | |
# Prepare streamers for each input | |
streamers = [TextStreamer(self.tokenizer, skip_prompt=True) for _ in content_list] | |
# Stream the output token by token for each input text | |
for i, streamer in enumerate(streamers): | |
for output in self.model.generate( | |
input_ids[i].unsqueeze(0), # Process each input separately | |
max_new_tokens=max_length, | |
do_sample=True, | |
temperature=temp, | |
eos_token_id=self.tokenizer.eos_token_id, | |
return_dict_in_generate=True, | |
output_scores=True, | |
streamer=streamer): | |
pass # TextStreamer automatically handles the streaming, no need to manually handle the output | |
else: | |
outputs = self.model.generate( | |
input_ids, | |
max_new_tokens=max_length, | |
do_sample=True, | |
temperature=temp, | |
eos_token_id=self.tokenizer.eos_token_id | |
) | |
return [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs] | |