Spaces:
Sleeping
Sleeping
File size: 4,302 Bytes
1921336 42c830b f6590f0 9a1ab03 488c5c4 de53991 34ffea3 dd681d0 1921336 488c5c4 4ea28ea 488c5c4 ed67a17 488c5c4 dd681d0 488c5c4 fa738bd 488c5c4 c0a9946 64df9ac dd681d0 1921336 64df9ac 1921336 dd681d0 1921336 dd681d0 1921336 dd681d0 1921336 9a1ab03 f664ce2 3f9babb dd681d0 64df9ac dd681d0 64df9ac de53991 1921336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import random
import gradio as gr
import json
from utils.data import dataset
from utils.multiple_stream import stream_data
from pages.summarization_playground import get_model_batch_generation
from pages.summarization_playground import custom_css
def random_data_selection():
datapoint = random.choice(dataset)
datapoint = datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue']
return datapoint
def create_arena():
with open("prompt/prompt.json", "r") as file:
json_data = file.read()
prompts = json.loads(json_data)
with gr.Blocks(theme=gr.themes.Soft().set(spacing_size="sm", text_size="sm"), css=custom_css) as demo:
with gr.Group():
datapoint = random_data_selection()
gr.Markdown("""This arena is designed to compare different prompts. Click the button to stream responses from randomly shuffled prompts. Each column represents a response generated from one randomly selected prompt.
Once the streaming is complete, you can choose the best response.\u2764\ufe0f""")
data_textbox = gr.Textbox(label="Data", lines=10, placeholder="Datapoints to test...", value=datapoint)
with gr.Row():
random_selection_button = gr.Button("Change Data")
stream_button = gr.Button("✨ Click to Streaming ✨")
random_selection_button.click(
fn=random_data_selection,
inputs=[],
outputs=[data_textbox]
)
random.shuffle(prompts)
random_selected_prompts = prompts[:3]
# Store prompts in state components
state_prompts = gr.State(value=prompts)
state_random_selected_prompts = gr.State(value=random_selected_prompts)
with gr.Row():
columns = [gr.Textbox(label=f"Prompt {i+1}", lines=10) for i in range(len(random_selected_prompts))]
model = get_model_batch_generation("Qwen/Qwen2-1.5B-Instruct")
def start_streaming(data, random_selected_prompts):
content_list = [prompt['prompt'] + '\n{' + data + '}\n\nsummary:' for prompt in random_selected_prompts]
for response_data in stream_data(content_list, model):
updates = [gr.update(value=response_data[i]) for i in range(len(columns))]
yield tuple(updates)
stream_button.click(
fn=start_streaming,
inputs=[data_textbox, state_random_selected_prompts],
outputs=columns,
show_progress=False
)
choice = gr.Radio(label="Choose the best response:", choices=["Response 1", "Response 2", "Response 3"])
submit_button = gr.Button("Submit")
output = gr.Textbox(label="You selected:", visible=False)
def update_prompt_metrics(selected_choice, prompts, random_selected_prompts):
if selected_choice == "Response 1":
prompt_id = random_selected_prompts[0]['id']
elif selected_choice == "Response 2":
prompt_id = random_selected_prompts[1]['id']
elif selected_choice == "Response 3":
prompt_id = random_selected_prompts[2]['id']
else:
raise ValueError(f"No corresponding response of {selected_choice}")
for prompt in prompts:
if prompt['id'] == prompt_id:
prompt["metric"]["winning_number"] += 1
break
else:
raise ValueError(f"No prompt of id {prompt_id}")
with open("prompt/prompt.json", "w") as f:
json.dump(prompts, f)
return gr.update(value=f"You selected: {selected_choice}", visible=True), gr.update(interactive=False), gr.update(interactive=False)
submit_button.click(
fn=update_prompt_metrics,
inputs=[choice, state_prompts, state_random_selected_prompts],
outputs=[output, choice, submit_button],
)
return demo
if __name__ == "__main__":
demo = create_arena()
demo.queue()
demo.launch()
|