Spaces:
Sleeping
Sleeping
File size: 7,235 Bytes
9a1ab03 de53991 43d8095 9a1ab03 44d180e 43d8095 44d180e f9f4138 9779cd8 9a1ab03 5e8ccd5 5275a8d 57ace24 01a2ce5 43d8095 9a1ab03 43d8095 9a1ab03 26b45a8 1921336 26b45a8 1921336 26b45a8 f9f4138 5e8ccd5 26b45a8 a232b31 5e8ccd5 66846f0 44d180e 9a1ab03 5e8ccd5 de53991 68c64e4 dea4ce7 6c0544b 9a1ab03 de53991 43d8095 c5b9462 54c6336 de53991 5e8ccd5 b97cda3 1921336 de53991 5a4b599 143b62d de53991 5e8ccd5 f253a0d 54c6336 29c23fe c52847e 2ffcfd9 c52847e 2ffcfd9 5f75abd de53991 5e8ccd5 de53991 43d8095 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from dotenv import load_dotenv
import gradio as gr
import random
from utils.model import Model
from utils.data import dataset
import gc
import torch
import logging
load_dotenv()
custom_css = """
gradio-app {
background: #eeeefc !important;
}
.bordered-text {
border-style: solid;
border-width: 1px;
padding: 5px;
margin-bottom: 0px;
border-radius: 1px;
font-family: Verdana;
font-size: 20px !important;
font-weight: bold ;
color:#000000;
}
.parameter-text {
border-style: solid;
border-width: 1px;
padding: 5px;
margin-bottom: 0px;
border-radius: 1px;
font-family: Verdana;
font-size: 10px !important;
font-weight: bold ;
color:#000000;
}
.title {
font-size: 35px;
font-weight: maroon;
font-family: Helvetica;
}
input-label {
font-size: 20px;
font-weight: bold;
font-family: Papyrus;
}
.custom-button {
background-color: white !important /* Green background */
color: black; /* White text */
border: none; /* Remove border */
padding: 10px 20px; /* Add padding */
text-align: center; /* Center text */
display: inline-block; /* Inline block */
font-size: 22px; /* Font size */
margin: 4px 2px; /* Margin */
cursor: pointer; /* Pointer cursor on hover */
border-radius: 4px; /* Rounded corners */
}
.custom-button:hover {
background-color: black;
color: white;
}
"""
__model_on_gpu__ = ''
model = {model_name: None for model_name in Model.__model_list__}
random_label = '🔀 Random dialogue from dataset'
examples = {
"example 1": """Boston's injury reporting for Kristaps Porziņģis has been fairly coy. He missed Game 3, but his coach told reporters just before Game 4 that was technically available, but with a catch.
Joe Mazzulla said Porziņģis would "only be used in specific instances, if necessary." That sounds like the team doesn't want to risk further injury to his dislocated Posterior Tibialis (or some other body part, due to overcompensation for the ankle), unless it's in a desperate situation.
Being up 3-1, with Game 5 at home, doesn't qualify as desperate. So, expect the Celtics to continue slow-playing KP's return.
It'd obviously be nice for Boston to have his rim protection and jump shooting back. It was missed in the Game 4 blowout, but the Celtics have also demonstrated they can win without the big man throughout this campaign.
On top of winning Game 3 of this series, Boston is plus-10.9 points per 100 possessions when Porziņģis has been off the floor this regular and postseason.""",
"example 2": """Prior to the Finals, we predicted that Dereck Lively II's minutes would swell over the course of the series, and that's starting to play out.
He averaged 18.8 minutes in Games 1 and 2 and was up to 26.2 in Games 3 and 4. That's with the regulars being pulled long before the final buzzer in Friday's game, too.
Expect the rookie's playing time to continue to climb in Game 5. It seems increasingly clear that coach Jason Kidd trusts him over the rest of Dallas' bigs, and it's not hard to see why.
Lively has been absolutely relentless on the offensive glass all postseason. He makes solid decisions as a passer when his rolls don't immediately lead to dunks. And he's not a liability when caught defending guards or wings outside.
All of that has led to postseason averages of 8.2 points, 7.6 rebounds, 1.4 assists and 1.0 blocks in just 21.9 minutes, as well as a double-double in 22 minutes of Game 4.
Back in Boston, Kidd is going to rely on Lively even more. He'll play close to 30 minutes and reach double-figures in both scoring and rebounding again.""",
random_label: ""
}
def model_device_check(model_name):
global __model_on_gpu__
if __model_on_gpu__ != model_name:
if __model_on_gpu__:
logging.info(f"delete model {__model_on_gpu__}")
del model[__model_on_gpu__]
gc.collect()
torch.cuda.empty_cache()
model[model_name] = Model(model_name)
__model_on_gpu__ = model_name
def get_model_batch_generation(model_name):
model_device_check(model_name)
return model[model_name]
def generate_answer(sources, model_name, prompt, temperature, max_new_tokens, do_sample):
model_device_check(model_name)
content = prompt + '\n{' + sources + '}\n\nsummary:'
answer = model[model_name].gen(content,temperature,max_new_tokens,do_sample)[0].strip()
return answer
def process_input(input_text, model_selection, prompt, temperature, max_new_tokens, do_sample):
if input_text:
logging.info("Start generation")
response = generate_answer(input_text, model_selection, prompt)
return f"## Original Dialogue:\n\n{input_text}\n\n## Summarization:\n\n{response}"
else:
return "Please fill the input to generate outputs."
def update_input(example):
if example == random_label:
datapoint = random.choice(dataset)
return datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue']
return examples[example]
def create_summarization_interface():
with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm",text_size="sm"), css=custom_css) as demo:
gr.Markdown("## This is a playground to test prompts for clinical dialogue summarizations")
with gr.Row():
example_dropdown = gr.Dropdown(choices=list(examples.keys()), label="Choose an example", value=random_label)
model_dropdown = gr.Dropdown(choices=Model.__model_list__, label="Choose a model", value=Model.__model_list__[0])
gr.Markdown("<div style='border: 4px solid white; padding: 3px; border-radius: 5px;width:100px;padding-top: 0.5px;padding-bottom: 10px;'><h3>Prompt 👥</h3></center></div>")
Template_text = gr.Textbox(value="""Summarize the following dialogue""", label='Input Prompting Template', lines=8, placeholder='Input your prompts')
datapoint = random.choice(dataset)
input_text = gr.Textbox(label="Input Dialogue", lines=10, placeholder="Enter text here...", value=datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue'])
submit_button = gr.Button("✨ Submit ✨")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("<div style='border: 4px solid white; padding: 2px; border-radius: 5px;width:130px;padding-bottom: 10px;'><b><h3>Parameters 📈</h3></center></b></div>")
with gr.Column():
temperature = gr.Textbox(label="Temperature",elem_classes="parameter-text", value=0.0)
max_new_tokens = gr.Textbox(label="Max New Tokens",elem_classes="parameter-text", value=500)
do_sample = gr.Dropdown([True,False],label="Do Sample",elem_classes="parameter-text", value=True)
output = gr.Markdown(line_breaks=True)
example_dropdown.change(update_input, inputs=[example_dropdown], outputs=[input_text])
submit_button.click(process_input, inputs=[input_text,model_dropdown,Template_text,temperature,max_new_tokens,do_sample], outputs=[output])
return demo
if __name__ == "__main__":
demo = create_summarization_interface()
demo.launch()
|