File size: 1,438 Bytes
01a2ce5
44d180e
 
 
2b167f5
09f135e
 
 
2b167f5
a1fddf9
01a2ce5
143b62d
 
c689aee
143b62d
01a2ce5
 
a1fddf9
 
01a2ce5
 
44d180e
 
01a2ce5
44d180e
 
e63d745
44d180e
 
01a2ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3984f1
44d180e
b9e79ed
fcae4c8
da4acea
44d180e
 
 
4e6ddea
44d180e
 
01a2ce5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from transformers import AutoTokenizer
import transformers
import torch

from huggingface_hub import login
import os 

login(token = os.getenv('HF_TOKEN'))

class Model(torch.nn.Module):
    number_of_models = 0
    __model_list__ = [
        "lmsys/vicuna-7b-v1.5",
        "mistralai/Mistral-7B-Instruct-v0.1"
    ]

    def __init__(self, model_name="lmsys/vicuna-7b-v1.5") -> None:
        super(Model, self).__init__()
        
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.name = model_name
        self.pipeline = transformers.pipeline(
            "text-generation",
            model=model_name,
            tokenizer=self.tokenizer,
            torch_dtype=torch.bfloat16,
            device_map="cpu",
        )

        self.update()

    @classmethod
    def update(cls):
        cls.number_of_models += 1

    def return_mode_name(self):
        return self.name
    
    def return_tokenizer(self):
        return self.tokenizer
    
    def return_model(self):
        return self.pipeline

    def gen(self, content, temp=0.1, max_length=500):
        sequences = self.pipeline(
            content,
            max_new_tokens=max_length,
            do_sample=True,
            temperature=temp,
            num_return_sequences=1,
            eos_token_id=self.tokenizer.eos_token_id,
            return_full_text=False
        )
        
        return sequences[-1]['generated_text']