Spaces:
Sleeping
Sleeping
File size: 1,438 Bytes
01a2ce5 44d180e 2b167f5 09f135e 2b167f5 a1fddf9 01a2ce5 143b62d c689aee 143b62d 01a2ce5 a1fddf9 01a2ce5 44d180e 01a2ce5 44d180e e63d745 44d180e 01a2ce5 f3984f1 44d180e b9e79ed fcae4c8 da4acea 44d180e 4e6ddea 44d180e 01a2ce5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
from transformers import AutoTokenizer
import transformers
import torch
from huggingface_hub import login
import os
login(token = os.getenv('HF_TOKEN'))
class Model(torch.nn.Module):
number_of_models = 0
__model_list__ = [
"lmsys/vicuna-7b-v1.5",
"mistralai/Mistral-7B-Instruct-v0.1"
]
def __init__(self, model_name="lmsys/vicuna-7b-v1.5") -> None:
super(Model, self).__init__()
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.name = model_name
self.pipeline = transformers.pipeline(
"text-generation",
model=model_name,
tokenizer=self.tokenizer,
torch_dtype=torch.bfloat16,
device_map="cpu",
)
self.update()
@classmethod
def update(cls):
cls.number_of_models += 1
def return_mode_name(self):
return self.name
def return_tokenizer(self):
return self.tokenizer
def return_model(self):
return self.pipeline
def gen(self, content, temp=0.1, max_length=500):
sequences = self.pipeline(
content,
max_new_tokens=max_length,
do_sample=True,
temperature=temp,
num_return_sequences=1,
eos_token_id=self.tokenizer.eos_token_id,
return_full_text=False
)
return sequences[-1]['generated_text'] |