Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,671 Bytes
4596a70 0227006 d35aee2 4596a70 0227006 9346f1c 0227006 9346f1c 4596a70 460d762 4596a70 0227006 460d762 d16cee2 1f60a20 d350941 9346f1c d16cee2 460d762 1f60a20 d16cee2 d52179b d16cee2 2a73469 d16cee2 2a73469 10f9b3c 8cb7546 10f9b3c d16cee2 f742519 d52179b f742519 460d762 12cea14 9346f1c 460d762 9346f1c 460d762 1f60a20 1363c8a 2a73469 ffefe11 d16cee2 2a73469 d16cee2 614ee1f db6f218 614ee1f 07bfeca 614ee1f 460d762 10f9b3c 1363c8a 460d762 d350941 1363c8a 9346f1c a885f09 ffefe11 d16cee2 2a73469 d16cee2 2a73469 a885f09 d52179b a885f09 1f60a20 614ee1f 1f60a20 a885f09 d52179b 1f60a20 614ee1f db6f218 1f60a20 b2c063a 614ee1f 1f60a20 d16cee2 1f60a20 a885f09 d52179b a885f09 1f60a20 d52179b 1f60a20 614ee1f a885f09 1f60a20 b323764 1363c8a d16cee2 1363c8a 1f60a20 0227006 ffefe11 a885f09 b2c063a 1f60a20 460d762 614ee1f 1f60a20 d16cee2 460d762 614ee1f 1f60a20 85dbbc4 12cea14 85dbbc4 12cea14 217b585 85dbbc4 12cea14 8696209 ef627e9 1f60a20 b2c063a 614ee1f 12cea14 460d762 12cea14 460d762 2f6ebf5 12cea14 1f60a20 614ee1f 1f60a20 85dbbc4 12cea14 85dbbc4 8696209 217b585 614ee1f 1f60a20 614ee1f d52179b 1f60a20 12cea14 614ee1f f742519 d16cee2 460d762 1363c8a 1f60a20 614ee1f 1f60a20 d16cee2 1f60a20 d16cee2 1f60a20 a885f09 d16cee2 1f60a20 614ee1f 1f60a20 ffefe11 614ee1f 2a73469 ecef2dc 99b25b8 ecef2dc aa7c3f4 ecef2dc 7644705 601f2e9 8cb7546 7644705 8cb7546 6a6e05c aa7c3f4 7644705 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 613696b ecef2dc 601f2e9 95f85ed 601f2e9 6e8f400 ecef2dc 6e8f400 ecef2dc 6e8f400 460d762 6e8f400 ecef2dc 6e8f400 ecef2dc 601f2e9 613696b 6e8f400 0227006 613696b 8dfa543 0227006 8dfa543 6e8f400 8dfa543 613696b 8dfa543 613696b 8dfa543 613696b 8dfa543 00358b1 0227006 6e8f400 12cea14 b323764 95f85ed b323764 ef627e9 b323764 0227006 6e8f400 12cea14 217b585 12cea14 6e8f400 12cea14 6e8f400 8cb7546 6e8f400 12cea14 6e8f400 12cea14 217b585 6e8f400 8cb7546 8dfa543 d16cee2 8cb7546 10f9b3c c131125 10f9b3c f458f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import json
import os
from datetime import datetime, timezone
import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from transformers import AutoConfig
from src.auto_leaderboard.get_model_metadata import apply_metadata
from src.assets.text_content import *
from src.auto_leaderboard.load_results import get_eval_results_dicts, make_clickable_model
from src.assets.hardcoded_evals import gpt4_values, gpt35_values, baseline
from src.assets.css_html_js import custom_css, get_window_url_params
from src.utils_display import AutoEvalColumn, EvalQueueColumn, fields, styled_error, styled_warning, styled_message
from src.init import get_all_requested_models, load_all_info_from_hub
pd.set_option('display.precision', 1)
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
QUEUE_REPO = "open-llm-leaderboard/requests"
RESULTS_REPO = "open-llm-leaderboard/results"
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
EVAL_REQUESTS_PATH = "eval-queue"
EVAL_RESULTS_PATH = "eval-results"
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
api = HfApi()
def restart_space():
api.restart_space(
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN
)
eval_queue, requested_models, eval_results = load_all_info_from_hub(QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH)
if not IS_PUBLIC:
eval_queue_private, requested_models_private, eval_results_private = load_all_info_from_hub(PRIVATE_QUEUE_REPO, PRIVATE_RESULTS_REPO, EVAL_REQUESTS_PATH_PRIVATE, EVAL_RESULTS_PATH_PRIVATE)
else:
eval_queue_private, eval_results_private = None, None
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
if not IS_PUBLIC:
COLS.insert(2, AutoEvalColumn.precision.name)
TYPES.insert(2, AutoEvalColumn.precision.type)
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [c.name for c in [AutoEvalColumn.arc, AutoEvalColumn.hellaswag, AutoEvalColumn.mmlu, AutoEvalColumn.truthfulqa]]
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
def get_leaderboard_df():
if eval_results:
print("Pulling evaluation results for the leaderboard.")
eval_results.git_pull()
if eval_results_private:
print("Pulling evaluation results for the leaderboard.")
eval_results_private.git_pull()
all_data = get_eval_results_dicts(IS_PUBLIC)
if not IS_PUBLIC:
all_data.append(gpt4_values)
all_data.append(gpt35_values)
all_data.append(baseline)
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
df = pd.DataFrame.from_records(all_data)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df[COLS].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, BENCHMARK_COLS)]
return df
def get_evaluation_queue_df():
if eval_queue:
print("Pulling changes for the evaluation queue.")
eval_queue.git_pull()
if eval_queue_private:
print("Pulling changes for the evaluation queue.")
eval_queue_private.git_pull()
entries = [
entry
for entry in os.listdir(EVAL_REQUESTS_PATH)
if not entry.startswith(".")
]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(EVAL_REQUESTS_PATH, entry)
with open(file_path) as fp:
data = json.load(fp)
data["# params"] = "unknown"
data["model"] = make_clickable_model(data["model"])
data["revision"] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [
e
for e in os.listdir(f"{EVAL_REQUESTS_PATH}/{entry}")
if not e.startswith(".")
]
for sub_entry in sub_entries:
file_path = os.path.join(EVAL_REQUESTS_PATH, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
# data["# params"] = get_n_params(data["model"])
data["model"] = make_clickable_model(data["model"])
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
df_pending = pd.DataFrame.from_records(pending_list, columns=EVAL_COLS)
df_running = pd.DataFrame.from_records(running_list, columns=EVAL_COLS)
df_finished = pd.DataFrame.from_records(finished_list, columns=EVAL_COLS)
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
original_df = get_leaderboard_df()
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df()
def is_model_on_hub(model_name, revision) -> bool:
try:
AutoConfig.from_pretrained(model_name, revision=revision)
return True, None
except ValueError as e:
return False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard."
except Exception as e:
print(f"Could not get the model config from the hub.: {e}")
return False, "was not found on hub!"
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
private: bool,
weight_type: str,
model_type: str,
):
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# check the model actually exists before adding the eval
if revision == "":
revision = "main"
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error = is_model_on_hub(base_model, revision)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error = is_model_on_hub(model, revision)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
print("adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"private": private,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
# Check for duplicate submission
if out_path.split("eval-queue/")[1].lower() in requested_models:
return styled_warning("This model has been already submitted.")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
token=H4_TOKEN,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# remove the local file
os.remove(out_path)
return styled_message("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list.")
def refresh():
leaderboard_df = get_leaderboard_df()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df()
return (
leaderboard_df,
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
)
def search_table(df, leaderboard_table, query):
if AutoEvalColumn.model_type.name in leaderboard_table.columns:
filtered_df = df[
(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))
| (df[AutoEvalColumn.model_type.name].str.contains(query, case=False))
]
else:
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
return filtered_df[leaderboard_table.columns]
def select_columns(df, columns):
always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
# We use COLS to maintain sorting
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]]
return filtered_df
#TODO allow this to filter by values of any columns
def filter_items(df, leaderboard_table, query):
if query == "all":
return df[leaderboard_table.columns]
else:
query = query[0] #take only the emoji character
if AutoEvalColumn.model_type_symbol.name in leaderboard_table.columns:
filtered_df = df[(df[AutoEvalColumn.model_type_symbol.name] == query)]
else:
return leaderboard_table.columns
return filtered_df[leaderboard_table.columns]
def change_tab(query_param):
query_param = query_param.replace("'", '"')
query_param = json.loads(query_param)
if (
isinstance(query_param, dict)
and "tab" in query_param
and query_param["tab"] == "evaluation"
):
return gr.Tabs.update(selected=1)
else:
return gr.Tabs.update(selected=0)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices = [c for c in COLS if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
value = [c for c in COLS_LITE if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Column(min_width=320):
search_bar = gr.Textbox(
placeholder="🔍 Search for your model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
filter_columns = gr.Radio(
label="⏚ Filter model types",
choices = [
"all",
ModelType.PT.to_str(),
ModelType.FT.to_str(),
ModelType.IFT.to_str(),
ModelType.RL.to_str(),
],
value="all",
elem_id="filter-columns"
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value+ [AutoEvalColumn.dummy.name]],
headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name],
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
max_rows=None,
visible=False,
)
search_bar.submit(
search_table,
[hidden_leaderboard_table_for_search, leaderboard_table, search_bar],
leaderboard_table,
)
shown_columns.change(select_columns, [hidden_leaderboard_table_for_search, shown_columns], leaderboard_table)
filter_columns.change(filter_items, [hidden_leaderboard_table_for_search, leaderboard_table, filter_columns], leaderboard_table)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(
label="revision", placeholder="main"
)
private = gr.Checkbox(
False, label="Private", visible=not IS_PUBLIC
)
model_type = gr.Dropdown(
choices=[
ModelType.PT.to_str(" : "),
ModelType.FT.to_str(" : "),
ModelType.IFT.to_str(" : "),
ModelType.RL.to_str(" : "),
],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)"],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=["Original", "Delta", "Adapter"],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(
label="Base model (for delta or adapter weights)"
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type
],
submission_result,
)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table,
finished_eval_table,
running_eval_table,
pending_eval_table,
],
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
dummy = gr.Textbox(visible=False)
demo.load(
change_tab,
dummy,
tabs,
_js=get_window_url_params,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.queue(concurrency_count=40).launch()
|