Spaces:
Sleeping
Sleeping
File size: 26,765 Bytes
3f8e838 242ebc0 3f8e838 242ebc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
import os
import cv2
import numpy as np
from skimage.exposure import match_histograms
from sklearn.cluster import KMeans, DBSCAN
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns
import time
def resize_images(images, resize_factor=1.0):
"""
Resizes the input and reference images based on the average dimensions of the two images and a resize factor.
Parameters:
images (tuple): A tuple containing two images (input_image, reference_image). Both images should be numpy arrays.
resize_factor (float): A factor by which to resize the images. Default is 1.0, which means the images will be resized to the average dimensions of the two images.
Returns:
tuple: A tuple containing the resized input and reference images.
Example:
>>> input_image = cv2.imread('input.jpg')
>>> reference_image = cv2.imread('reference.jpg')
>>> resized_images = resize_images((input_image, reference_image), resize_factor=0.5)
"""
input_image, reference_image = images
average_width = (input_image.shape[1] + reference_image.shape[1]) * 0.5
average_height = (input_image.shape[0] + reference_image.shape[0]) * 0.5
new_shape = (
int(resize_factor * average_width),
int(resize_factor * average_height),
)
input_image = cv2.resize(input_image, new_shape, interpolation=cv2.INTER_AREA)
reference_image = cv2.resize(
reference_image, new_shape, interpolation=cv2.INTER_AREA
)
return input_image, reference_image
def homography(images, debug=False, output_directory=None):
"""
Apply homography transformation to align two images.
Args:
images (tuple): A tuple containing two images, where the first image is the input image and the second image is the reference image.
debug (bool, optional): If True, debug images will be generated. Defaults to False.
output_directory (str, optional): The directory to save the debug images. Defaults to None.
Returns:
tuple: A tuple containing the aligned input image and the reference image.
"""
input_image, reference_image = images
# Initiate SIFT detector
sift = cv2.SIFT_create()
# find the keypoints and descriptors with SIFT
input_keypoints, input_descriptors = sift.detectAndCompute(input_image, None)
reference_keypoints, reference_descriptors = sift.detectAndCompute(
reference_image, None
)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(reference_descriptors, input_descriptors, k=2)
# Apply ratio test
good_draw = []
good_without_list = []
for m, n in matches:
if m.distance < 0.8 * n.distance: # 0.8 = a value suggested by David G. Lowe.
good_draw.append([m])
good_without_list.append(m)
# cv.drawMatchesKnn expects list of lists as matches.
if debug:
assert output_directory is not None, "Output directory must be provided"
os.makedirs(output_directory, exist_ok=True)
cv2.imwrite(
os.path.join(output_directory, "matching.png"),
cv2.drawMatchesKnn(
reference_image,
reference_keypoints,
input_image,
input_keypoints,
good_draw,
None,
flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS,
),
)
# Extract location of good matches
reference_points = np.zeros((len(good_without_list), 2), dtype=np.float32)
input_points = reference_points.copy()
for i, match in enumerate(good_without_list):
input_points[i, :] = reference_keypoints[match.queryIdx].pt
reference_points[i, :] = input_keypoints[match.trainIdx].pt
# Find homography
h, _ = cv2.findHomography(input_points, reference_points, cv2.RANSAC)
# Use homography
height, width = reference_image.shape[:2]
white_reference_image = 255 - np.zeros(shape=reference_image.shape, dtype=np.uint8)
white_reg = cv2.warpPerspective(white_reference_image, h, (width, height))
blank_pixels_mask = np.any(white_reg != [255, 255, 255], axis=-1)
reference_image_registered = cv2.warpPerspective(
reference_image, h, (width, height)
)
if debug:
assert output_directory is not None, "Output directory must be provided"
cv2.imwrite(
os.path.join(output_directory, "aligned.png"), reference_image_registered
)
input_image[blank_pixels_mask] = [0, 0, 0]
reference_image_registered[blank_pixels_mask] = [0, 0, 0]
return input_image, reference_image_registered
def histogram_matching(images, debug=False, output_directory=None):
"""
Perform histogram matching between an input image and a reference image.
Args:
images (tuple): A tuple containing the input image and the reference image.
debug (bool, optional): If True, save the histogram-matched image to the output directory. Defaults to False.
output_directory (str, optional): The directory to save the histogram-matched image. Defaults to None.
Returns:
tuple: A tuple containing the input image and the histogram-matched reference image.
"""
input_image, reference_image = images
reference_image_matched = match_histograms(
reference_image, input_image, channel_axis=-1
)
if debug:
assert output_directory is not None, "Output directory must be provided"
cv2.imwrite(
os.path.join(output_directory, "histogram_matched.jpg"),
reference_image_matched,
)
reference_image_matched = np.asarray(reference_image_matched, dtype=np.uint8)
return input_image, reference_image_matched
def preprocess_images(images, resize_factor=1.0, debug=False, output_directory=None):
"""
Preprocesses a list of images by performing the following steps:
1. Resizes the images based on the given resize factor.
2. Applies homography to align the resized images.
3. Performs histogram matching on the aligned images.
Args:
images (tuple): A tuple containing the input image and the reference image.
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
debug (bool, optional): Whether to enable debug mode. Defaults to False.
output_directory (str, optional): The directory to save the output images. Defaults to None.
Returns:
tuple: The preprocessed images.
Example:
>>> images = (input_image, reference_image)
>>> preprocess_images(images, resize_factor=0.5, debug=True, output_directory='output/')
"""
start_time = time.time()
resized_images = resize_images(images, resize_factor)
aligned_images = homography(
resized_images, debug=debug, output_directory=output_directory
)
matched_images = histogram_matching(
aligned_images, debug=debug, output_directory=output_directory
)
print("--- Preprocessing time - %s seconds ---" % (time.time() - start_time))
return matched_images
# The returned vector_set goes later to the PCA algorithm which derives the EVS (Eigen Vector Space).
# Therefore, there is a mean normalization of the data
# jump_size is for iterating non-overlapping windows. This parameter should be eqaul to the window_size of the system
def find_vector_set(descriptors, jump_size, shape):
"""
Find the vector set from the given descriptors.
Args:
descriptors (numpy.ndarray): The input descriptors.
jump_size (int): The jump size for sampling the descriptors.
shape (tuple): The shape of the descriptors.
Returns:
tuple: A tuple containing the vector set and the mean vector.
"""
size_0, size_1 = shape
descriptors_2d = descriptors.reshape((size_0, size_1, descriptors.shape[1]))
vector_set = descriptors_2d[::jump_size, ::jump_size]
vector_set = vector_set.reshape(
(vector_set.shape[0] * vector_set.shape[1], vector_set.shape[2])
)
mean_vec = np.mean(vector_set, axis=0)
vector_set = vector_set - mean_vec # mean normalization
return vector_set, mean_vec
# returns the FSV (Feature Vector Space) which then goes directly to clustering (with Kmeans)
# Multiply the data with the EVS to get the entire data in the PCA target space
def find_FVS(descriptors, EVS, mean_vec):
"""
Calculate the feature vector space (FVS) by performing dot product of descriptors and EVS,
and subtracting the mean vector from the result.
Args:
descriptors (numpy.ndarray): Array of descriptors.
EVS (numpy.ndarray): Eigenvalue matrix.
mean_vec (numpy.ndarray): Mean vector.
Returns:
numpy.ndarray: The calculated feature vector space (FVS).
"""
FVS = np.dot(descriptors, EVS)
FVS = FVS - mean_vec
# print("\nfeature vector space size", FVS.shape)
return FVS
# assumes descriptors is already flattened
# returns descriptors after moving them into the PCA vector space
def descriptors_to_pca(descriptors, pca_target_dim, window_size, shape):
"""
Applies Principal Component Analysis (PCA) to a set of descriptors.
Args:
descriptors (list): List of descriptors.
pca_target_dim (int): Target dimensionality for PCA.
window_size (int): Size of the sliding window.
shape (tuple): Shape of the descriptors.
Returns:
list: Feature vector set after applying PCA.
"""
vector_set, mean_vec = find_vector_set(descriptors, window_size, shape)
pca = PCA(pca_target_dim)
pca.fit(vector_set)
EVS = pca.components_
mean_vec = np.dot(mean_vec, EVS.transpose())
FVS = find_FVS(descriptors, EVS.transpose(), mean_vec)
return FVS
def get_descriptors(
images,
window_size,
pca_dim_gray,
pca_dim_rgb,
debug=False,
output_directory=None,
):
"""
Compute descriptors for input images using sliding window technique and PCA.
Args:
images (tuple): A tuple containing the input image and reference image.
window_size (int): The size of the sliding window.
pca_dim_gray (int): The number of dimensions to keep for grayscale PCA.
pca_dim_rgb (int): The number of dimensions to keep for RGB PCA.
debug (bool, optional): Whether to enable debug mode. Defaults to False.
output_directory (str, optional): The directory to save debug images. Required if debug is True.
Returns:
numpy.ndarray: The computed descriptors.
Raises:
AssertionError: If debug is True but output_directory is not provided.
"""
input_image, reference_image = images
diff_image_gray = cv2.cvtColor(
cv2.absdiff(input_image, reference_image), cv2.COLOR_BGR2GRAY
)
if debug:
assert output_directory is not None, "Output directory must be provided"
cv2.imwrite(os.path.join(output_directory, "diff.jpg"), diff_image_gray)
# Padding for windowing
padded_diff_gray = np.pad(
diff_image_gray,
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
mode="constant",
)
# Sliding window for gray
shape = (input_image.shape[0], input_image.shape[1], window_size, window_size)
strides = padded_diff_gray.strides * 2
windows_gray = np.lib.stride_tricks.as_strided(
padded_diff_gray, shape=shape, strides=strides
)
descriptors_gray_diff = windows_gray.reshape(-1, window_size * window_size)
# 3-channel RGB differences
diff_image_r = cv2.absdiff(input_image[:, :, 0], reference_image[:, :, 0])
diff_image_g = cv2.absdiff(input_image[:, :, 1], reference_image[:, :, 1])
diff_image_b = cv2.absdiff(input_image[:, :, 2], reference_image[:, :, 2])
if debug:
assert output_directory is not None, "Output directory must be provided"
cv2.imwrite(
os.path.join(output_directory, "final_diff.jpg"),
cv2.absdiff(input_image, reference_image),
)
cv2.imwrite(os.path.join(output_directory, "final_diff_r.jpg"), diff_image_r)
cv2.imwrite(os.path.join(output_directory, "final_diff_g.jpg"), diff_image_g)
cv2.imwrite(os.path.join(output_directory, "final_diff_b.jpg"), diff_image_b)
# Padding for windowing RGB
padded_diff_r = np.pad(
diff_image_r,
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
mode="constant",
)
padded_diff_g = np.pad(
diff_image_g,
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
mode="constant",
)
padded_diff_b = np.pad(
diff_image_b,
((window_size // 2, window_size // 2), (window_size // 2, window_size // 2)),
mode="constant",
)
# Sliding window for RGB
windows_r = np.lib.stride_tricks.as_strided(
padded_diff_r, shape=shape, strides=strides
)
windows_g = np.lib.stride_tricks.as_strided(
padded_diff_g, shape=shape, strides=strides
)
windows_b = np.lib.stride_tricks.as_strided(
padded_diff_b, shape=shape, strides=strides
)
descriptors_rgb_diff = np.concatenate(
[
windows_r.reshape(-1, window_size * window_size),
windows_g.reshape(-1, window_size * window_size),
windows_b.reshape(-1, window_size * window_size),
],
axis=1,
)
# PCA on descriptors
shape = input_image.shape[::-1][1:] # shape = (height, width)
descriptors_gray_diff = descriptors_to_pca(
descriptors_gray_diff, pca_dim_gray, window_size, shape
)
descriptors_rgb_diff = descriptors_to_pca(
descriptors_rgb_diff, pca_dim_rgb, window_size, shape
)
# Concatenate grayscale and RGB PCA results
descriptors = np.concatenate((descriptors_gray_diff, descriptors_rgb_diff), axis=-1)
return descriptors
def k_means_clustering(FVS, components, image_shape):
"""
Perform K-means clustering on the given feature vectors.
Args:
FVS (array-like): The feature vectors to be clustered.
components (int): The number of clusters (components) to create.
image_shape (tuple): The size of the images used to reshape the change map.
Returns:
array-like: The change map obtained from the K-means clustering.
"""
kmeans = KMeans(components, verbose=0)
kmeans.fit(FVS)
flatten_change_map = kmeans.predict(FVS)
change_map = np.reshape(flatten_change_map, (image_shape[0], image_shape[1]))
return change_map
def clustering_to_mse_values(change_map, input_image, reference_image, n):
"""
Compute the normalized mean squared error (MSE) values for each cluster in a change map.
Args:
change_map (numpy.ndarray): Array representing the cluster labels for each pixel in the change map.
input_image (numpy.ndarray): Array representing the input image.
reference_image (numpy.ndarray): Array representing the reference image.
n (int): Number of clusters.
Returns:
list: Normalized MSE values for each cluster.
"""
# Ensure the images are in integer format for calculations
input_image = input_image.astype(int)
reference_image = reference_image.astype(int)
# Compute the squared differences
squared_diff = np.mean((input_image - reference_image) ** 2, axis=-1)
# Initialize arrays to store MSE and size for each cluster
mse = np.zeros(n, dtype=float)
size = np.zeros(n, dtype=int)
# Compute the MSE and size for each cluster
for k in range(n):
mask = change_map == k
size[k] = np.sum(mask)
if size[k] > 0:
mse[k] = np.sum(squared_diff[mask])
# Normalize MSE values by the number of pixels and the maximum possible MSE (255^2)
normalized_mse = (mse / size) / (255**2)
return normalized_mse.tolist()
def compute_change_map(
images,
window_size,
clusters,
pca_dim_gray,
pca_dim_rgb,
debug=False,
output_directory=None,
):
"""
Compute the change map and mean squared error (MSE) array for a pair of input and reference images.
Args:
images (tuple): A tuple containing the input and reference images.
window_size (int): The size of the sliding window for feature extraction.
clusters (int): The number of clusters for k-means clustering.
pca_dim_gray (int): The number of dimensions to reduce to for grayscale images.
pca_dim_rgb (int): The number of dimensions to reduce to for RGB images.
debug (bool, optional): Whether to enable debug mode. Defaults to False.
output_directory (str, optional): The directory to save the output files. Required if debug mode is enabled.
Returns:
tuple: A tuple containing the change map and MSE array.
Raises:
AssertionError: If debug mode is enabled but output_directory is not provided.
"""
input_image, reference_image = images
descriptors = get_descriptors(
images,
window_size,
pca_dim_gray,
pca_dim_rgb,
debug=debug,
output_directory=output_directory,
)
# Now we are ready for clustering!
change_map = k_means_clustering(descriptors, clusters, input_image.shape)
mse_array = clustering_to_mse_values(
change_map, input_image, reference_image, clusters
)
colormap = mcolors.LinearSegmentedColormap.from_list(
"custom_jet", plt.cm.jet(np.linspace(0, 1, clusters))
)
colors_array = (
colormap(np.linspace(0, 1, clusters))[:, :3] * 255
) # Convert to RGB values
palette = sns.color_palette("Paired", clusters)
palette = np.array(palette) * 255 # Convert to RGB values
# Optimized loop
change_map_flat = change_map.ravel()
colored_change_map_flat = (
colors_array[change_map_flat]
.reshape(change_map.shape[0], change_map.shape[1], 3)
.astype(np.uint8)
)
palette_colored_change_map_flat = (
palette[change_map_flat]
.reshape(change_map.shape[0], change_map.shape[1], 3)
.astype(np.uint8)
)
if debug:
assert output_directory is not None, "Output directory must be provided"
cv2.imwrite(
os.path.join(
output_directory,
f"window_size_{window_size}_pca_dim_gray{pca_dim_gray}_pca_dim_rgb{pca_dim_rgb}_clusters_{clusters}.jpg",
),
colored_change_map_flat,
)
cv2.imwrite(
os.path.join(
output_directory,
f"PALETTE_window_size_{window_size}_pca_dim_gray{pca_dim_gray}_pca_dim_rgb{pca_dim_rgb}_clusters_{clusters}.jpg",
),
palette_colored_change_map_flat,
)
if debug:
assert output_directory is not None, "Output directory must be provided"
# Saving Output for later evaluation
np.savetxt(
os.path.join(output_directory, "clustering_data.csv"),
change_map,
delimiter=",",
)
return change_map, mse_array
# selects the classes to be shown to the user as 'changes'.
# this selection is done by an MSE heuristic using DBSCAN clustering, to seperate the highest mse-valued classes from the others.
# the eps density parameter of DBSCAN might differ from system to system
def find_group_of_accepted_classes_DBSCAN(
MSE_array, debug=False, output_directory=None
):
"""
Finds the group of accepted classes using the DBSCAN algorithm.
Parameters:
- MSE_array (list): A list of mean squared error values.
- debug (bool): Flag indicating whether to enable debug mode or not. Default is False.
- output_directory (str): The directory where the output files will be saved. Default is None.
Returns:
- accepted_classes (list): A list of indices of the accepted classes.
"""
clustering = DBSCAN(eps=0.02, min_samples=1).fit(np.array(MSE_array).reshape(-1, 1))
number_of_clusters = len(set(clustering.labels_))
if number_of_clusters == 1:
print("No significant changes are detected.")
# print(clustering.labels_)
classes = [[] for _ in range(number_of_clusters)]
centers = np.zeros(number_of_clusters)
np.add.at(centers, clustering.labels_, MSE_array)
for i in range(len(MSE_array)):
classes[clustering.labels_[i]].append(i)
centers /= np.array([len(c) for c in classes])
min_class = np.argmin(centers)
accepted_classes = np.where(clustering.labels_ != min_class)[0]
if debug:
assert output_directory is not None, "Output directory must be provided"
plt.figure()
plt.xlabel("Index")
plt.ylabel("MSE")
plt.scatter(range(len(MSE_array)), MSE_array, c="red")
plt.scatter(
accepted_classes[:],
np.array(MSE_array)[np.array(accepted_classes)],
c="blue",
)
plt.title("K Mean Classification")
plt.savefig(os.path.join(output_directory, "mse.png"))
# save output for later evaluation
np.savetxt(
os.path.join(output_directory, "accepted_classes.csv"),
accepted_classes,
delimiter=",",
)
return [accepted_classes]
def draw_combination_on_transparent_input_image(
classes_mse, clustering, combination, transparent_input_image
):
"""
Draws a combination of classes on a transparent input image based on their mean squared error (MSE) order.
Args:
classes_mse (numpy.ndarray): Array of mean squared errors for each class.
clustering (dict): Dictionary containing the clustering information for each class.
combination (list): List of classes to be drawn on the image.
transparent_input_image (numpy.ndarray): Transparent input image.
Returns:
numpy.ndarray: Transparent input image with the specified combination of classes drawn on it.
"""
# HEAT MAP ACCORDING TO MSE ORDER
sorted_indexes = np.argsort(classes_mse)
for class_ in combination:
index = np.argwhere(sorted_indexes == class_).flatten()[0]
c = plt.cm.jet(float(index) / (len(classes_mse) - 1))
for [i, j] in clustering[class_]:
transparent_input_image[i, j] = (
c[2] * 255,
c[1] * 255,
c[0] * 255,
255,
) # BGR
return transparent_input_image
def detect_changes(
images,
output_alpha,
window_size,
clusters,
pca_dim_gray,
pca_dim_rgb,
debug=False,
output_directory=None,
):
"""
Detects changes between two images using a combination of clustering and image processing techniques.
Args:
images (tuple): A tuple containing two input images.
output_alpha (int): The alpha value for the output image.
window_size (int): The size of the sliding window used for computing change map.
clusters (int): The number of clusters used for clustering pixels.
pca_dim_gray (int): The number of dimensions to reduce the grayscale image to using PCA.
pca_dim_rgb (int): The number of dimensions to reduce the RGB image to using PCA.
debug (bool, optional): Whether to enable debug mode. Defaults to False.
output_directory (str, optional): The output directory for saving intermediate results. Defaults to None.
Returns:
numpy.ndarray: The resulting image with detected changes.
"""
start_time = time.time()
input_image, _ = images
clustering_map, mse_array = compute_change_map(
images,
window_size=window_size,
clusters=clusters,
pca_dim_gray=pca_dim_gray,
pca_dim_rgb=pca_dim_rgb,
debug=debug,
output_directory=output_directory,
)
clustering = [np.empty((0, 2), dtype=int) for _ in range(clusters)]
# Get the indices of each element in the clustering_map
indices = np.indices(clustering_map.shape).transpose(1, 2, 0).reshape(-1, 2)
flattened_map = clustering_map.flatten()
for cluster_idx in range(clusters):
clustering[cluster_idx] = indices[flattened_map == cluster_idx]
b_channel, g_channel, r_channel = cv2.split(input_image)
alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255
alpha_channel[:, :] = output_alpha
groups = find_group_of_accepted_classes_DBSCAN(mse_array, output_directory)
for group in groups:
transparent_input_image = cv2.merge(
(b_channel, g_channel, r_channel, alpha_channel)
)
result = draw_combination_on_transparent_input_image(
mse_array, clustering, group, transparent_input_image
)
print("--- Detect Changes time - %s seconds ---" % (time.time() - start_time))
return result
def pipeline(
images,
resize_factor=1.0,
output_alpha=50,
window_size=5,
clusters=16,
pca_dim_gray=3,
pca_dim_rgb=9,
debug=False,
output_directory=None,
):
"""
Applies a pipeline of image processing steps to detect changes in a sequence of images.
Args:
images (tuple): A list of input images.
resize_factor (float, optional): The factor by which to resize the images. Defaults to 1.0.
output_alpha (int, optional): The alpha value for the output images. Defaults to 50.
window_size (int, optional): The size of the sliding window for change detection. Defaults to 5.
clusters (int, optional): The number of clusters for color quantization. Defaults to 16.
pca_dim_gray (int, optional): The number of dimensions to keep for grayscale PCA. Defaults to 3.
pca_dim_rgb (int, optional): The number of dimensions to keep for RGB PCA. Defaults to 9.
debug (bool, optional): Whether to enable debug mode. Defaults to False.
output_directory (str, optional): The directory to save the output images. Defaults to None.
Returns:
numpy.ndarray: The resulting image with detected changes.
"""
if output_directory:
os.makedirs(output_directory, exist_ok=True)
preprocessed_images = preprocess_images(
images,
resize_factor=resize_factor,
debug=debug,
output_directory=output_directory,
)
result = detect_changes(
preprocessed_images,
output_alpha=output_alpha,
window_size=window_size,
clusters=clusters,
pca_dim_gray=pca_dim_gray,
pca_dim_rgb=pca_dim_rgb,
debug=debug,
output_directory=output_directory,
)
return result |