presidio / azure_ai_language_wrapper.py
omri374's picture
Upload 12 files
41e004f
raw
history blame
4.51 kB
import os
from typing import List, Optional
import logging
import dotenv
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
from presidio_analyzer import EntityRecognizer, RecognizerResult, AnalysisExplanation
from presidio_analyzer.nlp_engine import NlpArtifacts
logger = logging.getLogger("presidio-streamlit")
class AzureAIServiceWrapper(EntityRecognizer):
from azure.ai.textanalytics._models import PiiEntityCategory
TA_SUPPORTED_ENTITIES = [r.value for r in PiiEntityCategory]
def __init__(
self,
supported_entities: Optional[List[str]] = None,
supported_language: str = "en",
ta_client: Optional[TextAnalyticsClient] = None,
ta_key: Optional[str] = None,
ta_endpoint: Optional[str] = None,
):
"""
Wrapper for the Azure Text Analytics client
:param ta_client: object of type TextAnalyticsClient
:param ta_key: Azure cognitive Services for Language key
:param ta_endpoint: Azure cognitive Services for Language endpoint
"""
if not supported_entities:
supported_entities = self.TA_SUPPORTED_ENTITIES
super().__init__(
supported_entities=supported_entities,
supported_language=supported_language,
name="Azure AI Language PII",
)
self.ta_key = ta_key
self.ta_endpoint = ta_endpoint
if not ta_client:
ta_client = self.__authenticate_client(ta_key, ta_endpoint)
self.ta_client = ta_client
@staticmethod
def __authenticate_client(key: str, endpoint: str):
ta_credential = AzureKeyCredential(key)
text_analytics_client = TextAnalyticsClient(
endpoint=endpoint, credential=ta_credential
)
return text_analytics_client
def analyze(
self, text: str, entities: List[str] = None, nlp_artifacts: NlpArtifacts = None
) -> List[RecognizerResult]:
if not entities:
entities = []
response = self.ta_client.recognize_pii_entities(
[text], language=self.supported_language
)
results = [doc for doc in response if not doc.is_error]
recognizer_results = []
for res in results:
for entity in res.entities:
if entity.category not in self.supported_entities:
continue
analysis_explanation = AzureAIServiceWrapper._build_explanation(
original_score=entity.confidence_score,
entity_type=entity.category,
)
recognizer_results.append(
RecognizerResult(
entity_type=entity.category,
start=entity.offset,
end=entity.offset + len(entity.text),
score=entity.confidence_score,
analysis_explanation=analysis_explanation,
)
)
return recognizer_results
@staticmethod
def _build_explanation(
original_score: float, entity_type: str
) -> AnalysisExplanation:
explanation = AnalysisExplanation(
recognizer=AzureAIServiceWrapper.__class__.__name__,
original_score=original_score,
textual_explanation=f"Identified as {entity_type} by Text Analytics",
)
return explanation
def load(self) -> None:
pass
if __name__ == "__main__":
import presidio_helpers
dotenv.load_dotenv()
text = """
Here are a few example sentences we currently support:
Hello, my name is David Johnson and I live in Maine.
My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
On September 18 I visited microsoft.com and sent an email to [email protected], from the IP 192.168.0.1.
My passport: 191280342 and my phone number: (212) 555-1234.
This is a valid International Bank Account Number: IL150120690000003111111 . Can you please check the status on bank account 954567876544?
Kate's social security number is 078-05-1126. Her driver license? it is 1234567A.
"""
analyzer = presidio_helpers.analyzer_engine(
model_path="Azure Text Analytics PII",
ta_key=os.environ["TA_KEY"],
ta_endpoint=os.environ["TA_ENDPOINT"],
)
analyzer.analyze(text=text, language="en")