ombhojane's picture
Create app.py
12a81e0
raw
history blame
581 Bytes
import gradio as gr
from transformers import pipeline
# Load the image classification model
image_classification = pipeline("image-classification", model="ombhojane/healthyPlantsModel")
# Function to predict labels for the given image URL
def predict_labels(image_url):
result = image_classification(image_url)
return result[0]
# Create a Gradio interface
iface = gr.Interface(
fn=predict_labels,
inputs=gr.Image(type="url", label="Input Image URL"),
outputs=gr.Textbox(label="Predicted Label"),
live=True
)
# Launch the Gradio interface
iface.launch()