---1
Browse files
app.py
CHANGED
@@ -18,132 +18,89 @@ st.set_page_config(
|
|
18 |
layout="wide"
|
19 |
)
|
20 |
|
21 |
-
class BehaviorDetector(nn.Module):
|
22 |
-
def __init__(self, num_classes):
|
23 |
-
super(BehaviorDetector, self).__init__()
|
24 |
-
# Use EfficientNet as base model (better performance than ResNet)
|
25 |
-
self.base_model = models.efficientnet_b0(pretrained=True)
|
26 |
-
# Replace classifier
|
27 |
-
num_features = self.base_model.classifier[1].in_features
|
28 |
-
self.base_model.classifier = nn.Sequential(
|
29 |
-
nn.Dropout(p=0.2),
|
30 |
-
nn.Linear(num_features, num_classes)
|
31 |
-
)
|
32 |
-
|
33 |
-
def forward(self, x):
|
34 |
-
return torch.sigmoid(self.base_model(x))
|
35 |
-
|
36 |
class DogBehaviorAnalyzer:
|
37 |
-
def __init__(self
|
38 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
-
|
40 |
-
# Initialize YOLO model for dog detection (optional)
|
41 |
-
try:
|
42 |
-
self.yolo_model = YOLO(model_path) if model_path else None
|
43 |
-
except Exception as e:
|
44 |
-
st.warning("YOLO model not found. Running without dog detection.")
|
45 |
-
self.yolo_model = None
|
46 |
-
|
47 |
-
# Initialize behavior classifier
|
48 |
-
self.num_behaviors = 5
|
49 |
-
try:
|
50 |
-
self.behavior_model = BehaviorDetector(self.num_behaviors).to(self.device)
|
51 |
-
except Exception as e:
|
52 |
-
st.warning("Error loading behavior model. Using default classifier.")
|
53 |
-
self.behavior_model = models.resnet18(pretrained=True)
|
54 |
-
num_features = self.behavior_model.fc.in_features
|
55 |
-
self.behavior_model.fc = nn.Linear(num_features, self.num_behaviors)
|
56 |
-
self.behavior_model = self.behavior_model.to(self.device)
|
57 |
-
|
58 |
-
self.behavior_model.eval()
|
59 |
-
|
60 |
-
# Define sophisticated transforms
|
61 |
-
self.transform = transforms.Compose([
|
62 |
-
transforms.Resize((224, 224)),
|
63 |
-
transforms.ToTensor(),
|
64 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
65 |
-
std=[0.229, 0.224, 0.225]),
|
66 |
-
transforms.RandomHorizontalFlip(p=0.3),
|
67 |
-
transforms.ColorJitter(brightness=0.2, contrast=0.2)
|
68 |
-
])
|
69 |
-
|
70 |
-
# Behavior definitions with confidence thresholds
|
71 |
self.behaviors = {
|
72 |
-
'tail_wagging': {'threshold': 0.
|
73 |
-
'
|
74 |
-
'
|
75 |
-
'
|
76 |
-
'jumping': {'threshold': 0.8, 'description': 'Your dog is energetic and playful!'}
|
77 |
}
|
78 |
|
79 |
-
#
|
80 |
-
self.
|
81 |
-
|
82 |
-
|
83 |
-
"""Advanced frame preprocessing"""
|
84 |
-
# Convert BGR to RGB
|
85 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
cl = clahe.apply(l)
|
92 |
-
enhanced = cv2.merge((cl,a,b))
|
93 |
-
enhanced = cv2.cvtColor(enhanced, cv2.COLOR_LAB2RGB)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
104 |
|
105 |
def analyze_frame(self, frame):
|
106 |
-
"""Analyze frame
|
107 |
-
|
108 |
-
|
109 |
-
return []
|
110 |
-
|
111 |
-
# Preprocess frame
|
112 |
-
processed_frame = self.preprocess_frame(frame)
|
113 |
-
input_tensor = self.transform(processed_frame).unsqueeze(0).to(self.device)
|
114 |
-
|
115 |
-
with torch.no_grad():
|
116 |
-
predictions = self.behavior_model(input_tensor).squeeze().cpu().numpy()
|
117 |
|
118 |
-
# Update behavior history
|
119 |
-
for behavior, pred in zip(self.behaviors.keys(), predictions):
|
120 |
-
self.behavior_history[behavior].append(pred)
|
121 |
-
|
122 |
-
# Apply temporal smoothing and thresholds
|
123 |
detected_behaviors = []
|
124 |
-
for behavior, history in self.behavior_history.items():
|
125 |
-
if len(history) > 0:
|
126 |
-
avg_conf = sum(history) / len(history)
|
127 |
-
if avg_conf > self.behaviors[behavior]['threshold']:
|
128 |
-
detected_behaviors.append((behavior, avg_conf))
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
return detected_behaviors
|
131 |
|
132 |
def main():
|
133 |
-
st.title("🐕
|
134 |
-
st.write("Upload a video of your dog for
|
135 |
|
136 |
analyzer = DogBehaviorAnalyzer()
|
137 |
|
138 |
-
# Add model confidence control
|
139 |
-
confidence_threshold = st.sidebar.slider(
|
140 |
-
"Detection Confidence Threshold",
|
141 |
-
min_value=0.5,
|
142 |
-
max_value=0.95,
|
143 |
-
value=0.7,
|
144 |
-
step=0.05
|
145 |
-
)
|
146 |
-
|
147 |
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov'])
|
148 |
|
149 |
if video_file is not None:
|
@@ -179,38 +136,36 @@ def main():
|
|
179 |
progress = frame_count / total_frames
|
180 |
progress_bar.progress(progress)
|
181 |
|
182 |
-
#
|
183 |
-
annotated_frame = frame.copy()
|
184 |
detected_behaviors = analyzer.analyze_frame(frame)
|
185 |
|
186 |
# Draw behavior labels on frame
|
187 |
y_pos = 30
|
188 |
for behavior, conf in detected_behaviors:
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
y_pos += 30
|
200 |
|
201 |
video_placeholder.image(
|
202 |
-
cv2.cvtColor(
|
203 |
channels="RGB",
|
204 |
use_container_width=True
|
205 |
)
|
206 |
|
207 |
-
# Update analysis display
|
208 |
analysis_text = "Detected Behaviors:\n\n"
|
209 |
for behavior, count in behavior_counts.items():
|
210 |
if count > 0:
|
211 |
avg_conf = sum(confidence_history[behavior]) / len(confidence_history[behavior])
|
212 |
analysis_text += f"• {behavior.replace('_', ' ').title()}:\n"
|
213 |
-
analysis_text += f" Count: {count} |
|
214 |
analysis_text += f" {analyzer.behaviors[behavior]['description']}\n\n"
|
215 |
|
216 |
analysis_placeholder.text_area(
|
@@ -227,11 +182,11 @@ def main():
|
|
227 |
# Final analysis
|
228 |
st.subheader("Comprehensive Analysis")
|
229 |
|
230 |
-
# Create
|
231 |
col1, col2, col3 = st.columns(3)
|
232 |
|
233 |
with col1:
|
234 |
-
most_common = max(behavior_counts.items(), key=lambda x: x[1])[0]
|
235 |
st.metric("Primary Behavior", most_common.replace('_', ' ').title())
|
236 |
|
237 |
with col2:
|
@@ -239,32 +194,31 @@ def main():
|
|
239 |
st.metric("Total Behaviors", total_behaviors)
|
240 |
|
241 |
with col3:
|
242 |
-
|
|
|
243 |
st.metric("Average Confidence", f"{avg_confidence:.2%}")
|
244 |
|
245 |
# Behavior distribution chart
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
# Recommendations based on analysis
|
251 |
-
st.subheader("Personalized Recommendations")
|
252 |
-
if total_behaviors > 0:
|
253 |
-
st.write("Based on the detailed analysis, here are tailored recommendations:")
|
254 |
|
255 |
-
#
|
|
|
256 |
recommendations = []
|
|
|
257 |
if behavior_counts['tail_wagging'] > total_behaviors * 0.3:
|
258 |
-
recommendations.append("• Your dog shows frequent happiness - great time for
|
259 |
-
if behavior_counts['
|
260 |
-
recommendations.append("•
|
261 |
-
if behavior_counts['
|
262 |
-
recommendations.append("•
|
263 |
|
264 |
for rec in recommendations:
|
265 |
st.write(rec)
|
266 |
else:
|
267 |
-
st.write("
|
268 |
|
269 |
if __name__ == "__main__":
|
270 |
main()
|
|
|
18 |
layout="wide"
|
19 |
)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class DogBehaviorAnalyzer:
|
22 |
+
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
self.behaviors = {
|
24 |
+
'tail_wagging': {'threshold': 0.6, 'description': 'Your dog is displaying happiness and excitement!'},
|
25 |
+
'movement': {'threshold': 0.5, 'description': 'Your dog is active and moving around.'},
|
26 |
+
'stationary': {'threshold': 0.7, 'description': 'Your dog is calm and still.'},
|
27 |
+
'high_activity': {'threshold': 0.65, 'description': 'Your dog is very energetic!'}
|
|
|
28 |
}
|
29 |
|
30 |
+
# Motion detection parameters
|
31 |
+
self.history = []
|
32 |
+
self.max_history = 10
|
33 |
+
self.prev_frame = None
|
|
|
|
|
|
|
34 |
|
35 |
+
def detect_motion(self, frame):
|
36 |
+
"""Detect motion in frame"""
|
37 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
38 |
+
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
|
|
|
|
|
39 |
|
40 |
+
if self.prev_frame is None:
|
41 |
+
self.prev_frame = gray
|
42 |
+
return 0.0
|
43 |
+
|
44 |
+
frame_delta = cv2.absdiff(self.prev_frame, gray)
|
45 |
+
thresh = cv2.threshold(frame_delta, 25, 255, cv2.THRESH_BINARY)[1]
|
46 |
+
thresh = cv2.dilate(thresh, None, iterations=2)
|
47 |
+
|
48 |
+
motion_score = np.sum(thresh > 0) / thresh.size
|
49 |
+
self.prev_frame = gray
|
50 |
+
|
51 |
+
return motion_score
|
52 |
+
|
53 |
+
def detect_color_changes(self, frame):
|
54 |
+
"""Detect significant color changes that might indicate tail wagging"""
|
55 |
+
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
56 |
+
lower = np.array([0, 0, 0])
|
57 |
+
upper = np.array([180, 255, 255])
|
58 |
+
mask = cv2.inRange(hsv, lower, upper)
|
59 |
+
|
60 |
+
if len(self.history) > 0:
|
61 |
+
prev_mask = self.history[-1]
|
62 |
+
diff = cv2.absdiff(mask, prev_mask)
|
63 |
+
change_score = np.sum(diff > 0) / diff.size
|
64 |
+
else:
|
65 |
+
change_score = 0.0
|
66 |
|
67 |
+
self.history.append(mask)
|
68 |
+
if len(self.history) > self.max_history:
|
69 |
+
self.history.pop(0)
|
70 |
+
|
71 |
+
return change_score
|
72 |
|
73 |
def analyze_frame(self, frame):
|
74 |
+
"""Analyze frame using motion and color change detection"""
|
75 |
+
motion_score = self.detect_motion(frame)
|
76 |
+
color_change_score = self.detect_color_changes(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
|
|
|
|
|
|
|
|
|
|
78 |
detected_behaviors = []
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Detect tail wagging based on localized color changes
|
81 |
+
if color_change_score > self.behaviors['tail_wagging']['threshold']:
|
82 |
+
detected_behaviors.append(('tail_wagging', color_change_score))
|
83 |
+
|
84 |
+
# Detect movement
|
85 |
+
if motion_score > self.behaviors['movement']['threshold']:
|
86 |
+
detected_behaviors.append(('movement', motion_score))
|
87 |
+
|
88 |
+
# Detect stationary behavior
|
89 |
+
if motion_score < self.behaviors['stationary']['threshold']:
|
90 |
+
detected_behaviors.append(('stationary', 1.0 - motion_score))
|
91 |
+
|
92 |
+
# Detect high activity
|
93 |
+
if motion_score > self.behaviors['high_activity']['threshold']:
|
94 |
+
detected_behaviors.append(('high_activity', motion_score))
|
95 |
+
|
96 |
return detected_behaviors
|
97 |
|
98 |
def main():
|
99 |
+
st.title("🐕 Dog Behavior Analyzer")
|
100 |
+
st.write("Upload a video of your dog for behavior analysis!")
|
101 |
|
102 |
analyzer = DogBehaviorAnalyzer()
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov'])
|
105 |
|
106 |
if video_file is not None:
|
|
|
136 |
progress = frame_count / total_frames
|
137 |
progress_bar.progress(progress)
|
138 |
|
139 |
+
# Analyze frame
|
|
|
140 |
detected_behaviors = analyzer.analyze_frame(frame)
|
141 |
|
142 |
# Draw behavior labels on frame
|
143 |
y_pos = 30
|
144 |
for behavior, conf in detected_behaviors:
|
145 |
+
behavior_counts[behavior] += 1
|
146 |
+
confidence_history[behavior].append(conf)
|
147 |
+
cv2.putText(frame,
|
148 |
+
f"{behavior.replace('_', ' ').title()}: {conf:.2f}",
|
149 |
+
(10, y_pos),
|
150 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
151 |
+
0.7,
|
152 |
+
(0, 255, 0),
|
153 |
+
2)
|
154 |
+
y_pos += 30
|
|
|
155 |
|
156 |
video_placeholder.image(
|
157 |
+
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
|
158 |
channels="RGB",
|
159 |
use_container_width=True
|
160 |
)
|
161 |
|
162 |
+
# Update analysis display
|
163 |
analysis_text = "Detected Behaviors:\n\n"
|
164 |
for behavior, count in behavior_counts.items():
|
165 |
if count > 0:
|
166 |
avg_conf = sum(confidence_history[behavior]) / len(confidence_history[behavior])
|
167 |
analysis_text += f"• {behavior.replace('_', ' ').title()}:\n"
|
168 |
+
analysis_text += f" Count: {count} | Confidence: {avg_conf:.2f}\n"
|
169 |
analysis_text += f" {analyzer.behaviors[behavior]['description']}\n\n"
|
170 |
|
171 |
analysis_placeholder.text_area(
|
|
|
182 |
# Final analysis
|
183 |
st.subheader("Comprehensive Analysis")
|
184 |
|
185 |
+
# Create metrics
|
186 |
col1, col2, col3 = st.columns(3)
|
187 |
|
188 |
with col1:
|
189 |
+
most_common = max(behavior_counts.items(), key=lambda x: x[1])[0] if any(behavior_counts.values()) else "None"
|
190 |
st.metric("Primary Behavior", most_common.replace('_', ' ').title())
|
191 |
|
192 |
with col2:
|
|
|
194 |
st.metric("Total Behaviors", total_behaviors)
|
195 |
|
196 |
with col3:
|
197 |
+
valid_confidences = [conf for confs in confidence_history.values() if confs for conf in confs]
|
198 |
+
avg_confidence = np.mean(valid_confidences) if valid_confidences else 0
|
199 |
st.metric("Average Confidence", f"{avg_confidence:.2%}")
|
200 |
|
201 |
# Behavior distribution chart
|
202 |
+
if any(behavior_counts.values()):
|
203 |
+
st.subheader("Behavior Distribution")
|
204 |
+
behavior_data = {k.replace('_', ' ').title(): v for k, v in behavior_counts.items() if v > 0}
|
205 |
+
st.bar_chart(behavior_data)
|
|
|
|
|
|
|
|
|
206 |
|
207 |
+
# Recommendations
|
208 |
+
st.subheader("Behavior Insights")
|
209 |
recommendations = []
|
210 |
+
|
211 |
if behavior_counts['tail_wagging'] > total_behaviors * 0.3:
|
212 |
+
recommendations.append("• Your dog shows frequent happiness - great time for positive reinforcement!")
|
213 |
+
if behavior_counts['high_activity'] > total_behaviors * 0.4:
|
214 |
+
recommendations.append("• High energy levels detected - consider more physical exercise")
|
215 |
+
if behavior_counts['stationary'] > total_behaviors * 0.5:
|
216 |
+
recommendations.append("• Your dog appears calm - good for training sessions")
|
217 |
|
218 |
for rec in recommendations:
|
219 |
st.write(rec)
|
220 |
else:
|
221 |
+
st.write("Upload a video to see behavior analysis!")
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
main()
|