aipet / app.py
ombhojane's picture
Update app.py
9b66cdf verified
raw
history blame
9.76 kB
import streamlit as st
import cv2
import numpy as np
import tempfile
from PIL import Image
import torch
from torchvision import transforms, models
import time
import plotly.graph_objects as go
from PIL import Image, ImageDraw
import base64
from io import BytesIO
import pandas as pd
# Set page config
st.set_page_config(
page_title="Dog Language Understanding",
page_icon="πŸ•",
layout="wide"
)
class DogBehaviorAnalyzer:
def __init__(self):
# Initialize model (using pretrained ResNet for this example)
self.model = models.resnet50(pretrained=True)
self.model.eval()
# Define image transformations
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Enhanced behavior mappings with emotions and tips
self.behaviors = {
'tail_wagging': {
'emotion': 'Happy and excited',
'description': 'Your dog is expressing joy and enthusiasm!',
'tips': [
'This is a great time for positive reinforcement training',
'Consider engaging in play or exercise',
'Use this excitement for teaching new tricks'
]
},
'barking': {
'emotion': 'Alert or communicative',
'description': 'Your dog is trying to communicate or alert you.',
'tips': [
'Check what triggered the barking',
'Use positive reinforcement for quiet behavior',
'Consider training "quiet" and "speak" commands'
]
},
'ears_perked': {
'emotion': 'Alert and interested',
'description': 'Your dog is focused and attentive.',
'tips': [
'Great moment for training exercises',
'Consider mental stimulation activities',
'Use this attention for bonding exercises'
]
},
'lying_down': {
'emotion': 'Relaxed and comfortable',
'description': 'Your dog is calm and at ease.',
'tips': [
'Perfect time for gentle petting',
'Maintain a peaceful environment',
'Consider quiet bonding activities'
]
},
'jumping': {
'emotion': 'Excited and playful',
'description': 'Your dog is energetic and seeking interaction!',
'tips': [
'Channel energy into structured play',
'Practice "four paws on floor" training',
'Consider agility exercises'
]
}
}
def analyze_frame(self, frame):
# Convert frame to PIL Image
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Transform image
input_tensor = self.transform(image)
input_batch = input_tensor.unsqueeze(0)
# Simulate behavior detection
# In a real implementation, you'd use a properly trained model
behaviors = []
confidence_scores = np.random.random(len(self.behaviors))
for behavior, score in zip(self.behaviors.keys(), confidence_scores):
if score > 0.7: # Threshold for detection
behaviors.append(behavior)
return behaviors
def create_animation(self, behavior):
"""Create simple animations for behaviors"""
# Create a simple animation frame
img = Image.new('RGB', (200, 200), 'white')
draw = ImageDraw.Draw(img)
if behavior == 'tail_wagging':
# Draw a simple tail wagging animation
draw.arc([50, 50, 150, 150], 0, 180, fill='black', width=2)
elif behavior == 'barking':
# Draw speech-bubble like shapes
draw.ellipse([50, 50, 150, 150], outline='black', width=2)
# Convert to base64 for display
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def main():
st.title("πŸ• Dog Language Understanding")
st.write("Upload a video of your dog to analyze their behavior and emotions!")
analyzer = DogBehaviorAnalyzer()
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov'])
if video_file is not None:
# Save uploaded file temporarily
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(video_file.read())
# Video processing
cap = cv2.VideoCapture(tfile.name)
# Create columns for layout
col1, col2 = st.columns(2)
with col1:
st.subheader("Video Preview")
video_placeholder = st.empty()
# Analysis results storage
behavior_counts = {behavior: 0 for behavior in analyzer.behaviors.keys()}
current_emotions = set()
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Progress bar
progress_bar = st.progress(0)
progress_text = st.empty()
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress = frame_count / total_frames
progress_bar.progress(progress)
progress_text.text(f"Analyzing video: {int(progress * 100)}%")
# Update video preview periodically (every 5th frame)
if frame_count % 5 == 0:
video_placeholder.image(
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
channels="RGB",
use_container_width=True
)
# Analyze frame
detected_behaviors = analyzer.analyze_frame(frame)
for behavior in detected_behaviors:
behavior_counts[behavior] += 1
current_emotions.add(behavior)
cap.release()
progress_text.empty()
# Display final analysis
st.subheader("Behavior Analysis Results")
# Display detected behaviors and their interpretations
for behavior, count in behavior_counts.items():
if count > 0:
with st.expander(f"{behavior.replace('_', ' ').title()} - Detected {count} times"):
behavior_info = analyzer.behaviors[behavior]
st.write(f"**Emotion:** {behavior_info['emotion']}")
st.write(f"**Description:** {behavior_info['description']}")
# Display behavior animation
animation_data = analyzer.create_animation(behavior)
st.image(
f"data:image/png;base64,{animation_data}",
width=100,
caption=f"{behavior.replace('_', ' ').title()} Visual"
)
# Display training tips
st.subheader("Training Tips:")
for tip in behavior_info['tips']:
st.info(tip)
# Create emotion timeline
if current_emotions:
st.subheader("Emotional Journey")
emotions_df = pd.DataFrame(list(current_emotions), columns=['Emotion'])
fig = go.Figure(data=[go.Scatter(
x=emotions_df.index,
y=emotions_df['Emotion'],
mode='lines+markers'
)])
fig.update_layout(
xaxis_title='Time',
yaxis_title='Emotion',
height=400
)
st.plotly_chart(fig, use_container_width=True)
# Summary metrics
st.subheader("Analysis Summary")
col1, col2, col3 = st.columns(3)
with col1:
most_common = max(behavior_counts.items(), key=lambda x: x[1])[0]
st.metric("Most Common Behavior", most_common.replace('_', ' ').title())
with col2:
total_behaviors = sum(behavior_counts.values())
st.metric("Total Behaviors Detected", total_behaviors)
with col3:
behavior_variety = len([b for b in behavior_counts.values() if b > 0])
st.metric("Behavior Variety", f"{behavior_variety} types")
# Final recommendations
if total_behaviors > 0:
st.subheader("Personalized Recommendations")
dominant_behavior = max(behavior_counts.items(), key=lambda x: x[1])[0]
st.write(f"""
Based on the analysis, here are personalized recommendations for your dog's dominant behavior ({dominant_behavior.replace('_', ' ')}):
{' '.join(analyzer.behaviors[dominant_behavior]['tips'])}
**General recommendations:**
- Maintain regular exercise routines
- Provide mental stimulation through toys and training
- Continue positive reinforcement training
- Monitor your dog's body language for better communication
""")
else:
st.warning("No behaviors detected. Try uploading a different video with clearer dog movements.")
if __name__ == "__main__":
main()