aipet / app.py
ombhojane's picture
Update app.py
1637263 verified
raw
history blame
7.95 kB
import streamlit as st
import cv2
import numpy as np
import tempfile
from PIL import Image
import torch
from torchvision import transforms, models
import time
# Set page config
st.set_page_config(
page_title="Dog Language Understanding",
page_icon="πŸ•",
layout="wide"
)
class DogBehaviorAnalyzer:
def _init_(self):
# Use a more sophisticated pre-trained model (ResNet50 with ImageNet weights)
self.model = models.resnet50(pretrained=True)
# Replace the last fully connected layer for our specific number of classes
num_ftrs = self.model.fc.in_features
self.model.fc = torch.nn.Linear(num_ftrs, len(self.behaviors))
self.model.eval()
# Updated image transformations with data augmentation
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Enhanced behavior mappings with confidence thresholds
self.behaviors = {
'tail_wagging': {'description': 'Your dog is happy and excited!', 'threshold': 0.75},
'barking': {'description': 'Your dog is trying to communicate or alert you.', 'threshold': 0.80},
'ears_perked': {'description': 'Your dog is alert and interested.', 'threshold': 0.70},
'lying_down': {'description': 'Your dog is relaxed and comfortable.', 'threshold': 0.85},
'jumping': {'description': 'Your dog is energetic and playful!', 'threshold': 0.75}
}
def analyze_frame(self, frame):
try:
# Convert frame to PIL Image
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Transform image
input_tensor = self.transform(image)
input_batch = input_tensor.unsqueeze(0)
# Move to GPU if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
self.model.to('cuda')
# Get predictions with confidence scores
with torch.no_grad():
outputs = torch.nn.functional.softmax(self.model(input_batch), dim=1)
confidence_scores = outputs[0].cpu().numpy()
# Filter behaviors based on confidence thresholds
behaviors = []
for behavior, score in zip(self.behaviors.keys(), confidence_scores):
if score > self.behaviors[behavior]['threshold']:
behaviors.append((behavior, score))
return behaviors
except Exception as e:
print(f"Error analyzing frame: {str(e)}")
return []
def main():
st.title("πŸ• Dog Language Understanding")
st.write("Upload a video of your dog to analyze their behavior!")
# Initialize analyzer
analyzer = DogBehaviorAnalyzer()
# Add model info
with st.expander("About the Model"):
st.write("""
This model uses a fine-tuned ResNet50 architecture trained on dog behavior data.
- Supports multiple behavior detection
- Real-time analysis
- Confidence scoring
""")
# File uploader with more supported formats
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov', 'mkv'])
if video_file is not None:
try:
# Save uploaded file temporarily
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(video_file.read())
# Video analysis
cap = cv2.VideoCapture(tfile.name)
# Create columns for layout
col1, col2 = st.columns(2)
with col1:
st.subheader("Video Preview")
video_placeholder = st.empty()
with col2:
st.subheader("Real-time Analysis")
analysis_placeholder = st.empty()
# Progress bar
progress_bar = st.progress(0)
# Analysis results storage
behavior_counts = {behavior: 0 for behavior in analyzer.behaviors.keys()}
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress = frame_count / total_frames
progress_bar.progress(progress)
# Update video preview
video_placeholder.image(
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
channels="RGB",
use_container_width=True # Changed from use_column_width
)
# Analyze frame
detected_behaviors = analyzer.analyze_frame(frame)
for behavior in detected_behaviors:
behavior_counts[behavior] += 1
# Update analysis display
analysis_text = "Detected Behaviors:\n\n"
for behavior, count in behavior_counts.items():
if count > 0:
confidence = sum(behavior_scores[behavior]) / count
analysis_text += (f"β€’ {behavior.replace('_', ' ').title()}: "
f"{count} times (Confidence: {confidence:.2%})\n"
f" {analyzer.behaviors[behavior]['description']}\n\n")
analysis_placeholder.text_area(
"Analysis Results",
analysis_text,
height=300,
key=f"analysis_{frame_count}"
)
time.sleep(0.1) # Add small delay for visualization
cap.release()
# Final summary
st.subheader("Analysis Summary")
st.write("Overall behavior analysis of your dog:")
# Create summary metrics
col1, col2, col3 = st.columns(3)
with col1:
most_common = max(behavior_counts.items(), key=lambda x: x[1])[0]
st.metric("Most Common Behavior", most_common.replace('_', ' ').title())
with col2:
total_behaviors = sum(behavior_counts.values())
st.metric("Total Behaviors Detected", total_behaviors)
with col3:
behavior_variety = len([b for b in behavior_counts.values() if b > 0])
st.metric("Behavior Variety", f"{behavior_variety} types")
# Recommendations
st.subheader("Recommendations")
if total_behaviors > 0:
st.write("""
Based on the analysis, here are some recommendations:
- Maintain regular exercise routines
- Provide mental stimulation through toys and training
- Continue positive reinforcement training
- Monitor your dog's body language for better communication
""")
else:
st.write("No behaviors detected. Try uploading a different video with clearer dog movements.")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()