File size: 5,886 Bytes
78b0078
9147378
03d09ab
b5d25fc
 
03d09ab
 
b5d25fc
 
d4a2e16
9147378
 
 
 
 
 
 
03d09ab
ac16e60
29bfa47
03d09ab
 
 
 
d4a2e16
03d09ab
9147378
 
 
 
 
 
 
29bfa47
03d09ab
 
9147378
03d09ab
 
 
 
 
9147378
 
03d09ab
 
 
 
 
 
29bfa47
03d09ab
9147378
03d09ab
9147378
b6fd3a8
03d09ab
 
 
b6fd3a8
b5d25fc
03d09ab
 
 
ac16e60
b5d25fc
03d09ab
 
 
 
 
 
 
 
 
 
 
 
b5d25fc
03d09ab
 
 
 
 
 
 
 
 
 
 
b5d25fc
03d09ab
b6fd3a8
9147378
 
 
 
 
 
 
b5d25fc
03d09ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9147378
 
 
 
 
 
 
 
03d09ab
 
 
 
 
 
 
 
 
 
 
 
 
 
b6fd3a8
b5d25fc
9147378
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import sys
import gradio as gr
import torch
import torchaudio
import uroman
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer

# Clone and install YarnGPT at startup
if not os.path.exists("yarngpt"):
    print("Cloning YarnGPT repository...")
    os.system("git clone https://github.com/saheedniyi02/yarngpt.git")
    # Add the repository to Python path
    sys.path.append("yarngpt")

# Import the YarnGPT AudioTokenizer
from yarngpt.audiotokenizer import AudioTokenizerV2

# Constants and paths
MODEL_PATH = "saheedniyi/YarnGPT2b"
WAV_TOKENIZER_CONFIG_PATH = "wavtokenizer_config.yaml"
WAV_TOKENIZER_MODEL_PATH = "wavtokenizer_model.ckpt"

# Download the model files at startup
if not os.path.exists(WAV_TOKENIZER_CONFIG_PATH):
    print("Downloading WavTokenizer config...")
    os.system(f"wget -O {WAV_TOKENIZER_CONFIG_PATH} https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml")

if not os.path.exists(WAV_TOKENIZER_MODEL_PATH):
    print("Downloading WavTokenizer model...")
    os.system(f"wget -O {WAV_TOKENIZER_MODEL_PATH} https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt")

# Initialize the model and tokenizer
def initialize_model():
    print("Initializing AudioTokenizer and model...")
    audio_tokenizer = AudioTokenizerV2(
        MODEL_PATH, 
        WAV_TOKENIZER_MODEL_PATH, 
        WAV_TOKENIZER_CONFIG_PATH
    )
    
    print("Loading YarnGPT model...")
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH, 
        torch_dtype="auto"
    ).to(audio_tokenizer.device)
    
    return model, audio_tokenizer

# Initialize the model and tokenizer
print("Starting model initialization...")
model, audio_tokenizer = initialize_model()
print("Model initialization complete!")

# Available voices and languages
VOICES = ["idera", "jude", "kemi", "tunde", "funmi"]
LANGUAGES = ["english", "yoruba", "igbo", "hausa", "pidgin"]

# Function to generate speech
def generate_speech(text, language, voice, temperature=0.1, rep_penalty=1.1):
    if not text:
        return None, "Please enter some text to convert to speech."
    
    try:
        # Create prompt
        prompt = audio_tokenizer.create_prompt(text, lang=language, speaker_name=voice)
        
        # Tokenize prompt
        input_ids = audio_tokenizer.tokenize_prompt(prompt)
        
        # Generate output
        output = model.generate(
            input_ids=input_ids,
            temperature=temperature,
            repetition_penalty=rep_penalty,
            max_length=4000,
        )
        
        # Convert to audio
        codes = audio_tokenizer.get_codes(output)
        audio = audio_tokenizer.get_audio(codes)
        
        # Save audio to file
        temp_audio_path = "output.wav"
        torchaudio.save(temp_audio_path, audio, sample_rate=24000)
        
        return temp_audio_path, f"Successfully generated speech for: {text[:50]}..."
    
    except Exception as e:
        return None, f"Error generating speech: {str(e)}"

# Example text for demonstration
examples = [
    ["Hello, my name is Claude. I am an AI assistant created by Anthropic.", "english", "idera"],
    ["Báwo ni o ṣe wà? Mo ń gbádùn ọjọ́ mi.", "yoruba", "kemi"],
    ["I don dey come house now, make you prepare food.", "pidgin", "jude"]
]

# Create the Gradio interface
with gr.Blocks(title="YarnGPT - Nigerian Accented Text-to-Speech") as demo:
    gr.Markdown("# YarnGPT - Nigerian Accented Text-to-Speech")
    gr.Markdown("Generate speech with Nigerian accents using YarnGPT model.")
    
    with gr.Tab("Basic TTS"):
        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(
                    label="Text to convert to speech", 
                    placeholder="Enter text here...",
                    lines=5
                )
                language = gr.Dropdown(
                    label="Language", 
                    choices=LANGUAGES, 
                    value="english"
                )
                voice = gr.Dropdown(
                    label="Voice", 
                    choices=VOICES, 
                    value="idera"
                )
                temperature = gr.Slider(
                    label="Temperature", 
                    minimum=0.1, 
                    maximum=1.0, 
                    value=0.1, 
                    step=0.1
                )
                rep_penalty = gr.Slider(
                    label="Repetition Penalty", 
                    minimum=1.0, 
                    maximum=2.0, 
                    value=1.1, 
                    step=0.1
                )
                generate_btn = gr.Button("Generate Speech")
            
            with gr.Column():
                audio_output = gr.Audio(label="Generated Speech")
                status_output = gr.Textbox(label="Status")
    
        gr.Examples(
            examples=examples,
            inputs=[text_input, language, voice],
            outputs=[audio_output, status_output],
            fn=generate_speech,
            cache_examples=False
        )
    
    generate_btn.click(
        generate_speech, 
        inputs=[text_input, language, voice, temperature, rep_penalty], 
        outputs=[audio_output, status_output]
    )
    
    gr.Markdown("""
    ## About YarnGPT
    YarnGPT is a text-to-speech model with Nigerian accents. It supports multiple languages and voices.
    
    ### Credits
    - Model by [saheedniyi](https://huggingface.co/saheedniyi/YarnGPT2b)
    - [Original Repository](https://github.com/saheedniyi02/yarngpt)
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch()