Spaces:
Running
on
Zero
Running
on
Zero
import os | |
if os.getenv('SPACES_ZERO_GPU') == "true": | |
os.environ['SPACES_ZERO_GPU'] = "1" | |
os.environ['K_DIFFUSION_USE_COMPILE'] = "0" | |
import spaces | |
import cv2 | |
import gradio as gr | |
import torch | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from basicsr.utils import img2tensor, tensor2img | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
from realesrgan.utils import RealESRGANer | |
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow | |
torch.set_grad_enabled(False) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
os.makedirs('pretrained_models', exist_ok=True) | |
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' | |
if not os.path.exists(realesr_model_path): | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") | |
# background enhancer with RealESRGAN | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device) | |
face_helper_dummy = FaceRestoreHelper( | |
1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
use_parse=True, | |
device=device, | |
model_rootpath=None) | |
os.makedirs('output', exist_ok=True) | |
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): | |
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) | |
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) | |
x_t_next = source_dist_samples.clone() | |
t_one = torch.ones(x.shape[0], device=device) | |
for i in range(num_flow_steps): | |
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps | |
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) | |
x_t_next = x_t_next.clone() + v_t_next * dt | |
return x_t_next.clip(0, 1).to(torch.float32) | |
def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, scale=2): | |
face_helper.clean_all() | |
if has_aligned: # the inputs are already aligned | |
img = cv2.resize(img, (512, 512)) | |
face_helper.cropped_faces = [img] | |
else: | |
face_helper.read_image(img) | |
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) | |
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels | |
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations. | |
# align and warp each face | |
face_helper.align_warp_face() | |
# face restoration | |
for cropped_face in face_helper.cropped_faces: | |
# prepare data | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
dummy_x = torch.zeros_like(cropped_face_t) | |
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, 25, device) | |
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(0, 1)) | |
# restored_face = cropped_face | |
restored_face = restored_face.astype('uint8') | |
face_helper.add_restored_face(restored_face) | |
if not has_aligned and paste_back: | |
# upsample the background | |
if upsampler is not None: | |
# Now only support RealESRGAN for upsampling background | |
bg_img = upsampler.enhance(img, outscale=scale)[0] | |
else: | |
bg_img = None | |
face_helper.get_inverse_affine(None) | |
# paste each restored face to the input image | |
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) | |
return face_helper.cropped_faces, face_helper.restored_faces, restored_img | |
else: | |
return face_helper.cropped_faces, face_helper.restored_faces, None | |
def inference(img, aligned, scale, num_steps): | |
if scale > 4: | |
scale = 4 # avoid too large scale value | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: # for gray inputs | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h > 3500 or w > 3500: | |
print('Image size too large.') | |
return None, None | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
face_helper = FaceRestoreHelper( | |
scale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
use_parse=True, | |
device=device, | |
model_rootpath=None) | |
has_aligned = True if aligned == 'Yes' else False | |
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, | |
paste_back=True) | |
if has_aligned: | |
output = restored_aligned[0] | |
else: | |
output = restored_img | |
# try: | |
# if scale != 2: | |
# interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
# h, w = img.shape[0:2] | |
# output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
# except Exception as error: | |
# print('Wrong scale input.', error) | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
else: | |
extension = 'jpg' | |
save_path = f'output/out.{extension}' | |
cv2.imwrite(save_path, output) | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
return output, save_path | |
# except Exception as error: | |
# print('global exception', error) | |
# return None, None | |
css = r""" | |
""" | |
demo = gr.Interface( | |
inference, [ | |
gr.Image(type="filepath", label="Input"), | |
gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'), | |
gr.Number(label="Rescaling factor (the rescaling factor of the final image)", value=2), | |
gr.Number(label="Number of flow steps. A higher value should result in better image quality, but this comes at the expense of runtime.", value=25), | |
], [ | |
gr.Image(type="numpy", label="Output"), | |
gr.File(label="Download the output image") | |
], | |
) | |
demo.queue() | |
demo.launch(state_session_capacity=15) |