Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,049 Bytes
a00800e 1b8b226 20ac05d a00800e b51eadf a00800e 0d4c368 1b8b226 1fef40b 1b8b226 bfc1040 1b8b226 a00800e 1b8b226 a00800e 1b8b226 b51eadf 1b8b226 b51eadf 1b8b226 a00800e b51eadf a00800e b51eadf a00800e b51eadf a00800e 1b8b226 b51eadf a00800e b51eadf 6ee52df 38e388c b51eadf 38e388c 2cd7eda b51eadf 38e388c a00800e 38e388c 20ac05d a00800e b51eadf 6fe04b4 a00800e 1b8b226 a00800e ad47941 1b8b226 a00800e 1b8b226 94bce76 d18dfca b51eadf 94bce76 1b8b226 2cd7eda b51eadf 1b8b226 b51eadf a00800e 1b8b226 a00800e 1b8b226 a00800e 1b8b226 15563ba 1b8b226 6fe04b4 1b8b226 b51eadf 81ba96a b51eadf d13513d b51eadf 1fef40b 2cd7eda bfc1040 595f913 a00800e 8ea5b1f 3b1fe09 b51eadf 1b8b226 8ea5b1f b51eadf 8ea5b1f b51eadf 8ea5b1f a00800e b51eadf 797cd30 a00800e 797cd30 8ea5b1f a00800e d18dfca 20ac05d bfc1040 b1e0e58 bfc1040 839dcf3 bfc1040 b1e0e58 bfc1040 20ac05d 82e4949 1de925c 82e4949 4942d84 3b1fe09 1de925c a00800e 5320385 ad47941 4ca94b8 839dcf3 ad47941 4ca94b8 ad47941 301c3a1 ad47941 4ca94b8 ad47941 301c3a1 2cd7eda 4ca94b8 ad47941 301c3a1 ad47941 bfc1040 b1e0e58 1de925c b1e0e58 81ba96a 1de925c 81ba96a d13513d b1e0e58 d13513d b1e0e58 bfc1040 cee2118 1fef40b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# Some of the implementations below are adopted from
# https://huggingface.co/spaces/sczhou/CodeFormer and https://huggingface.co/spaces/wzhouxiff/RestoreFormerPlusPlus
import os
import matplotlib.pyplot as plt
if os.getenv("SPACES_ZERO_GPU") == "true":
os.environ["SPACES_ZERO_GPU"] = "1"
os.environ["K_DIFFUSION_USE_COMPILE"] = "0"
import spaces
import cv2
from tqdm import tqdm
import gradio as gr
import random
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from realesrgan.utils import RealESRGANer
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow
MAX_SEED = 10000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("pretrained_models", exist_ok=True)
realesr_model_path = "pretrained_models/RealESRGAN_x4plus.pth"
if not os.path.exists(realesr_model_path):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth"
)
# # background enhancer with RealESRGAN
# model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
# half = True if torch.cuda.is_available() else False
# upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0,
# half=half)
def set_realesrgan():
use_half = False
if torch.cuda.is_available(): # set False in CPU/MPS mode
no_half_gpu_list = ["1650", "1660"] # set False for GPUs that don't support f16
if not True in [
gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list
]:
use_half = True
model = RRDBNet(
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2,
)
upsampler = RealESRGANer(
scale=2,
model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
model=model,
tile=400,
tile_pad=40,
pre_pad=0,
half=use_half,
)
return upsampler
upsampler = set_realesrgan()
pmrf = MMSERectifiedFlow.from_pretrained(
"ohayonguy/PMRF_blind_face_image_restoration"
).to(device=device)
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
source_dist_samples = pmrf_model.create_source_distribution_samples(
x, y, non_noisy_z0
)
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
x_t_next = source_dist_samples.clone()
t_one = torch.ones(x.shape[0], device=device)
for i in tqdm(range(num_flow_steps)):
num_t = (i / num_flow_steps) * (
1.0 - pmrf_model.hparams.eps
) + pmrf_model.hparams.eps
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
x_t_next = x_t_next.clone() + v_t_next * dt
return x_t_next.clip(0, 1)
def resize(img, size):
# From https://github.com/sczhou/CodeFormer/blob/master/facelib/utils/face_restoration_helper.py
h, w = img.shape[0:2]
scale = size / min(h, w)
h, w = int(h * scale), int(w * scale)
interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
return cv2.resize(img, (w, h), interpolation=interp)
@torch.inference_mode()
@spaces.GPU()
def enhance_face(img, face_helper, has_aligned, num_flow_steps, scale=2):
face_helper.clean_all()
if has_aligned: # The inputs are already aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.input_img = resize(face_helper.input_img, 640)
face_helper.get_face_landmarks_5(only_center_face=False, eye_dist_threshold=5)
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
raise gr.Error("Could not identify any face in the image.")
if has_aligned and len(face_helper.cropped_faces) > 1:
raise gr.Error(
"You marked that the input image is aligned, but multiple faces were detected."
)
# face restoration
for i, cropped_face in tqdm(enumerate(face_helper.cropped_faces)):
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
output = generate_reconstructions(
pmrf,
torch.zeros_like(cropped_face_t),
cropped_face_t,
None,
num_flow_steps,
device,
)
restored_face = tensor2img(
output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)
)
restored_face = restored_face.astype("uint8")
face_helper.add_restored_face(restored_face)
if not has_aligned:
# upsample the background
# Now only support RealESRGAN for upsampling background
bg_img = upsampler.enhance(img, outscale=scale)[0]
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
return face_helper.cropped_faces, face_helper.restored_faces, restored_img
else:
return face_helper.cropped_faces, face_helper.restored_faces, None
@torch.inference_mode()
@spaces.GPU()
def inference(
img,
randomize_seed,
aligned,
scale,
num_flow_steps,
seed,
progress=gr.Progress(track_tqdm=True),
):
if img is None:
raise gr.Error("Please upload an image before submitting.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
img = cv2.imread(img, cv2.IMREAD_COLOR)
h, w = img.shape[0:2]
if h > 4500 or w > 4500:
raise gr.Error("Image size too large.")
face_helper = FaceRestoreHelper(
scale,
face_size=512,
crop_ratio=(1, 1),
det_model="retinaface_resnet50",
save_ext="png",
use_parse=True,
device=device,
model_rootpath=None,
)
has_aligned = aligned
cropped_face, restored_faces, restored_img = enhance_face(
img, face_helper, has_aligned, num_flow_steps=num_flow_steps, scale=scale
)
if has_aligned:
output = restored_faces[0]
else:
output = restored_img
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
for i, restored_face in enumerate(restored_faces):
restored_faces[i] = cv2.cvtColor(restored_face, cv2.COLOR_BGR2RGB)
torch.cuda.empty_cache()
return output, restored_faces if len(restored_faces) > 1 else None
title = "Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration"
intro = """
<h3 style="margin-bottom: 10px; text-align: center;">
<a href="https://ohayonguy.github.io/">Guy Ohayon</a> ,
<a href="https://tomer.net.technion.ac.il/">Tomer Michaeli</a> ,
<a href="https://elad.cs.technion.ac.il/">Michael Elad</a>
</h3>
<h3 style="margin-bottom: 10px; text-align: center;">
<a href="https://arxiv.org/abs/2410.00418">[Paper]</a> |
<a href="https://pmrf-ml.github.io/">[Project Page]</a> |
<a href="https://github.com/ohayonguy/PMRF">[Code]</a>
</h3>
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418).
You may use this demo to enhance the quality of any image which contains faces.
PMRF is a novel photo-realistic image restoration algorithm. It (provably) approximates the optimal estimator that minimizes the Mean Squared Error (MSE) under a perfect perceptual quality constraint. Our model in this demo is specifically tailored for blind face image restoration. Please refer to our project's page for more details: https://pmrf-ml.github.io/.
*Notes* :
1. Our original model is designed to restore low-quality face images, where the image is square, there is *only one* face in the image, and the face is centered and aligned. In this demo, however, we incorporate mechanisms that allow restoring the quality of *any* image that contains *any* number of faces. Thus, the resulting quality of such general images is not guaranteed.
2. If your image is not an aligned and square face image, make sure that the checkbox "The input is an aligned and square face image" in *not* marked.
3. Too large images may result in out-of-memory error.
"""
article = r"""
If you find our work useful, please ⭐ our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF)
📝 **Citation**
```bibtex
@article{ohayon2024pmrf,
author = {Guy Ohayon and Tomer Michaeli and Michael Elad},
title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration},
journal = {arXiv preprint arXiv:2410.00418},
year = {2024},
url = {https://arxiv.org/abs/2410.00418}
}
```
📋 **License**
This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>.
📧 **Contact**
If you have any questions, please feel free to contact me at <b>[email protected]</b>.
"""
demo = gr.Interface(
inference,
[
gr.Image(label="Input", type="filepath", show_label=True),
gr.Checkbox(label="Randomize seed", value=True),
gr.Checkbox(label="The input is an aligned and square face image", value=False),
gr.Slider(
label="Scale factor (applicable to non-aligned face images)",
minimum=1,
maximum=4,
step=0.1,
value=1,
scale=1,
),
gr.Slider(
label="Number of inference steps (a larger number should lead to better image quality)",
minimum=1,
maximum=200,
step=1,
value=25,
scale=1,
),
gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, scale=1),
],
[
gr.Image(label="Output", type="numpy", show_label=True, format="png"),
gr.Gallery(
label="Restored faces gallery", type="numpy", show_label=True, format="png",
),
],
title=title,
description=intro,
article=article,
examples=[
["examples/01.png", False, False, 1, 25, 42],
["examples/03.jpg", False, False, 2, 25, 42],
["examples/00000055.png", False, True, 1, 25, 42],
["examples/00000085.png", False, True, 1, 25, 42],
["examples/00000113.png", False, True, 1, 25, 42],
["examples/00000137.png", False, True, 1, 25, 42],
],
theme=gr.themes.Soft(),
)
demo.queue()
demo.launch(state_session_capacity=15)
|