Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
from typing import Literal, Optional | |
class DataArguments: | |
r""" | |
Arguments pertaining to what data we are going to input our model for training and evaluation. | |
""" | |
template: Optional[str] = field( | |
default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."} | |
) | |
dataset: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}, | |
) | |
dataset_dir: Optional[str] = field( | |
default="data", metadata={"help": "Path to the folder containing the datasets."} | |
) | |
split: Optional[str] = field( | |
default="train", metadata={"help": "Which dataset split to use for training and evaluation."} | |
) | |
cutoff_len: Optional[int] = field( | |
default=1024, metadata={"help": "The maximum length of the model inputs after tokenization."} | |
) | |
reserved_label_len: Optional[int] = field( | |
default=1, metadata={"help": "The maximum length reserved for label after tokenization."} | |
) | |
train_on_prompt: Optional[bool] = field( | |
default=False, metadata={"help": "Whether to disable the mask on the prompt or not."} | |
) | |
streaming: Optional[bool] = field(default=False, metadata={"help": "Enable dataset streaming."}) | |
buffer_size: Optional[int] = field( | |
default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."} | |
) | |
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field( | |
default="concat", | |
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}, | |
) | |
interleave_probs: Optional[str] = field( | |
default=None, | |
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}, | |
) | |
overwrite_cache: Optional[bool] = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets."} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, metadata={"help": "The number of processes to use for the preprocessing."} | |
) | |
max_samples: Optional[int] = field( | |
default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."} | |
) | |
eval_num_beams: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}, | |
) | |
ignore_pad_token_for_loss: Optional[bool] = field( | |
default=True, | |
metadata={ | |
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." | |
}, | |
) | |
val_size: Optional[float] = field( | |
default=0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."} | |
) | |
sft_packing: Optional[bool] = field( | |
default=False, metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."} | |
) | |
cache_path: Optional[str] = field( | |
default=None, metadata={"help": "Path to save or load the preprocessed datasets."} | |
) | |
def __post_init__(self): | |
if self.reserved_label_len >= self.cutoff_len: | |
raise ValueError("`reserved_label_len` must be smaller than `cutoff_len`.") | |
if self.streaming and self.val_size > 1e-6 and self.val_size < 1: | |
raise ValueError("Streaming mode should have an integer val size.") | |
if self.streaming and self.max_samples is not None: | |
raise ValueError("`max_samples` is incompatible with `streaming`.") | |