Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union | |
from ..extras.logging import get_logger | |
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter | |
from .utils import Role, infer_max_len | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer | |
from .formatter import Formatter | |
logger = get_logger(__name__) | |
class Template: | |
format_user: "Formatter" | |
format_assistant: "Formatter" | |
format_system: "Formatter" | |
format_function: "Formatter" | |
format_observation: "Formatter" | |
format_tools: "Formatter" | |
format_separator: "Formatter" | |
default_system: str | |
stop_words: List[str] | |
efficient_eos: bool | |
replace_eos: bool | |
force_system: bool | |
def encode_oneturn( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
cutoff_len: Optional[int] = 1_000_000, | |
reserved_label_len: Optional[int] = 16, | |
) -> Tuple[List[int], List[int]]: | |
r""" | |
Returns a single pair of token ids representing prompt and response respectively. | |
""" | |
encoded_pairs = self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) | |
prompt_ids = [] | |
for query_ids, resp_ids in encoded_pairs[:-1]: | |
prompt_ids += query_ids + resp_ids | |
prompt_ids = prompt_ids + encoded_pairs[-1][0] | |
answer_ids = encoded_pairs[-1][1] | |
return prompt_ids, answer_ids | |
def encode_multiturn( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
cutoff_len: Optional[int] = 1_000_000, | |
reserved_label_len: Optional[int] = 16, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
r""" | |
Returns multiple pairs of token ids representing prompts and responses respectively. | |
""" | |
return self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) | |
def _encode( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: str, | |
tools: str, | |
cutoff_len: int, | |
reserved_label_len: int, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
r""" | |
Encodes formatted inputs to pairs of token ids. | |
Turn 0: system + query resp | |
Turn t: sep + query resp | |
""" | |
system = system or self.default_system | |
encoded_messages = [] | |
for i, message in enumerate(messages): | |
elements = [] | |
if i == 0 and (system or tools or self.force_system): | |
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" | |
elements += self.format_system.apply(content=(system + tool_text)) | |
elif i > 0 and i % 2 == 0: | |
elements += self.format_separator.apply() | |
if message["role"] == Role.USER: | |
elements += self.format_user.apply(content=message["content"], idx=str(i // 2)) | |
elif message["role"] == Role.ASSISTANT: | |
elements += self.format_assistant.apply(content=message["content"]) | |
elif message["role"] == Role.OBSERVATION: | |
elements += self.format_observation.apply(content=message["content"]) | |
elif message["role"] == Role.FUNCTION: | |
elements += self.format_function.apply(content=message["content"]) | |
else: | |
raise NotImplementedError | |
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) | |
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) | |
def _convert_elements_to_ids( | |
self, tokenizer: "PreTrainedTokenizer", elements: List[Union[str, Dict[str, str]]] | |
) -> List[int]: | |
r""" | |
Converts elements to token ids. | |
""" | |
token_ids = [] | |
for elem in elements: | |
if isinstance(elem, str): | |
if len(elem) != 0: | |
token_ids += tokenizer.encode(elem, add_special_tokens=False) | |
elif isinstance(elem, dict): | |
token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))] | |
elif isinstance(elem, set): | |
if "bos_token" in elem and tokenizer.bos_token_id: | |
token_ids += [tokenizer.bos_token_id] | |
elif "eos_token" in elem and tokenizer.eos_token_id: | |
token_ids += [tokenizer.eos_token_id] | |
else: | |
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem))) | |
return token_ids | |
def _make_pairs( | |
self, | |
encoded_messages: Sequence[List[int]], | |
cutoff_len: int, | |
reserved_label_len: int, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
encoded_pairs = [] | |
total_length = 0 | |
for i in range(0, len(encoded_messages), 2): | |
if total_length >= cutoff_len: | |
break | |
max_source_len, max_target_len = infer_max_len( | |
source_len=len(encoded_messages[i]), | |
target_len=len(encoded_messages[i + 1]), | |
max_len=(cutoff_len - total_length), | |
reserved_label_len=reserved_label_len, | |
) | |
encoded_messages[i] = encoded_messages[i][:max_source_len] | |
encoded_messages[i + 1] = encoded_messages[i + 1][:max_target_len] | |
total_length += len(encoded_messages[i]) + len(encoded_messages[i + 1]) | |
encoded_pairs.append((encoded_messages[i], encoded_messages[i + 1])) | |
return encoded_pairs | |
class Llama2Template(Template): | |
def _encode( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
messages: List[Dict[str, str]], | |
system: str, | |
tools: str, | |
cutoff_len: int, | |
reserved_label_len: int, | |
) -> Sequence[Tuple[List[int], List[int]]]: | |
r""" | |
Encodes formatted inputs to pairs of token ids. | |
Turn 0: system + query resp | |
Turn t: sep + query resp | |
""" | |
system = system or self.default_system | |
encoded_messages = [] | |
for i, message in enumerate(messages): | |
elements = [] | |
system_text = "" | |
if i == 0 and (system or tools or self.force_system): | |
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" | |
system_text = self.format_system.apply(content=(system + tool_text))[0] | |
elif i > 0 and i % 2 == 0: | |
elements += self.format_separator.apply() | |
if message["role"] == Role.USER: | |
elements += self.format_user.apply(content=system_text + message["content"]) | |
elif message["role"] == Role.ASSISTANT: | |
elements += self.format_assistant.apply(content=message["content"]) | |
elif message["role"] == Role.OBSERVATION: | |
elements += self.format_observation.apply(content=message["content"]) | |
elif message["role"] == Role.FUNCTION: | |
elements += self.format_function.apply(content=message["content"]) | |
else: | |
raise NotImplementedError | |
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) | |
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) | |
templates: Dict[str, Template] = {} | |
def register_template( | |
name: str, | |
format_user: Optional["Formatter"] = None, | |
format_assistant: Optional["Formatter"] = None, | |
format_system: Optional["Formatter"] = None, | |
format_function: Optional["Formatter"] = None, | |
format_observation: Optional["Formatter"] = None, | |
format_tools: Optional["Formatter"] = None, | |
format_separator: Optional["Formatter"] = None, | |
default_system: Optional[str] = "", | |
stop_words: Optional[List[str]] = [], | |
efficient_eos: Optional[bool] = False, | |
replace_eos: Optional[bool] = False, | |
force_system: Optional[bool] = False, | |
) -> None: | |
eos_slots = [] if efficient_eos else [{"eos_token"}] | |
template_class = Llama2Template if name.startswith("llama2") else Template | |
default_user_formatter = StringFormatter(slots=["{{content}}"]) | |
default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots) | |
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots) | |
default_tool_formatter = ToolFormatter(slots="default") | |
default_separator_formatter = EmptyFormatter() | |
templates[name] = template_class( | |
format_user=format_user or default_user_formatter, | |
format_assistant=format_assistant or default_assistant_formatter, | |
format_system=format_system or default_user_formatter, | |
format_function=format_function or default_function_formatter, | |
format_observation=format_observation or format_user or default_user_formatter, | |
format_tools=format_tools or default_tool_formatter, | |
format_separator=format_separator or default_separator_formatter, | |
default_system=default_system, | |
stop_words=stop_words, | |
efficient_eos=efficient_eos, | |
replace_eos=replace_eos, | |
force_system=force_system, | |
) | |
def get_template_and_fix_tokenizer(name: str, tokenizer: "PreTrainedTokenizer") -> Template: | |
if tokenizer.eos_token_id is None: | |
tokenizer.eos_token = "<|endoftext|>" | |
logger.info("Add eos token: {}".format(tokenizer.eos_token)) | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
logger.info("Add pad token: {}".format(tokenizer.pad_token)) | |
if name is None: # for pre-training | |
return None | |
template = templates.get(name, None) | |
assert template is not None, "Template {} does not exist.".format(name) | |
stop_words = template.stop_words | |
if template.replace_eos: | |
if not stop_words: | |
raise ValueError("Stop words are required to replace the EOS token.") | |
tokenizer.eos_token = stop_words[0] | |
stop_words = stop_words[1:] | |
logger.info("Replace eos token: {}".format(tokenizer.eos_token)) | |
if stop_words: | |
tokenizer.add_special_tokens( | |
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False | |
) | |
logger.info("Add {} to stop words.".format(",".join(stop_words))) | |
return template | |
register_template( | |
name="alpaca", | |
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
default_system=( | |
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request." | |
), | |
) | |
register_template( | |
name="aquila", | |
format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]), | |
format_separator=EmptyFormatter(slots=["###"]), | |
default_system=( | |
"A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions." | |
), | |
stop_words=["</s>"], | |
efficient_eos=True, | |
) | |
register_template( | |
name="baichuan", | |
format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]), | |
efficient_eos=True, | |
) | |
register_template( | |
name="baichuan2", | |
format_user=StringFormatter(slots=[{"token": "<reserved_106>"}, "{{content}}", {"token": "<reserved_107>"}]), | |
efficient_eos=True, | |
) | |
register_template( | |
name="belle", | |
format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
force_system=True, | |
) | |
register_template( | |
name="bluelm", | |
format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]), | |
) | |
register_template( | |
name="chatglm2", | |
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]), | |
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
efficient_eos=True, | |
force_system=True, | |
) | |
register_template( | |
name="chatglm3", | |
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), | |
format_assistant=StringFormatter(slots=["\n", "{{content}}"]), | |
format_system=StringFormatter( | |
slots=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"] | |
), | |
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), | |
format_observation=StringFormatter(slots=[{"token": "<|observation|>"}, "\n", "{{content}}"]), | |
default_system=( | |
"You are ChatGLM3, a large language model trained by Zhipu.AI. " | |
"Follow the user's instructions carefully. Respond using markdown." | |
), | |
stop_words=["<|user|>", "<|observation|>"], | |
efficient_eos=True, | |
) | |
register_template( | |
name="codegeex2", | |
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), | |
force_system=True, | |
) | |
register_template( | |
name="deepseek", | |
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
register_template( | |
name="deepseekcoder", | |
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:\n"]), | |
format_separator=EmptyFormatter(slots=["\n", {"token": "<|EOT|>"}, "\n"]), | |
default_system=( | |
"You are an AI programming assistant, utilizing the Deepseek Coder model, " | |
"developed by Deepseek Company, and you only answer questions related to computer science. " | |
"For politically sensitive questions, security and privacy issues, " | |
"and other non-computer science questions, you will refuse to answer\n" | |
), | |
stop_words=["<|EOT|>"], | |
efficient_eos=True, | |
) | |
register_template( | |
name="default", | |
format_user=StringFormatter(slots=["Human: {{content}}\nAssistant: "]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
) | |
register_template( | |
name="falcon", | |
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
efficient_eos=True, | |
) | |
register_template( | |
name="intern", | |
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]), | |
format_separator=EmptyFormatter(slots=[{"token": "<eoa>"}, "\n"]), | |
stop_words=["<eoa>"], | |
efficient_eos=True, | |
) | |
register_template( | |
name="intern2", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system=( | |
"You are an AI assistant whose name is InternLM (书生·浦语).\n" | |
"- InternLM (书生·浦语) is a conversational language model that is developed " | |
"by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" | |
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen " | |
"by the user such as English and 中文." | |
), | |
stop_words=["<|im_end|>"], | |
efficient_eos=True, # internlm2 tokenizer cannot set eos_token_id | |
) | |
register_template( | |
name="llama2", | |
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), | |
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), | |
default_system=( | |
"You are a helpful, respectful and honest assistant. " | |
"Always answer as helpfully as possible, while being safe. " | |
"Your answers should not include any harmful, unethical, " | |
"racist, sexist, toxic, dangerous, or illegal content. " | |
"Please ensure that your responses are socially unbiased and positive in nature.\n\n" | |
"If a question does not make any sense, or is not factually coherent, " | |
"explain why instead of answering something not correct. " | |
"If you don't know the answer to a question, please don't share false information." | |
), | |
) | |
register_template( | |
name="llama2_zh", | |
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), | |
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), | |
default_system="You are a helpful assistant. 你是一个乐于助人的助手。", | |
) | |
register_template( | |
name="mistral", | |
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
register_template( | |
name="openchat", | |
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]), | |
format_assistant=StringFormatter(slots=["{{content}}"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
register_template( | |
name="orion", | |
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: </s>"]), | |
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), | |
force_system=True, | |
) | |
register_template( | |
name="qwen", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
default_system="You are a helpful assistant.", | |
stop_words=["<|im_end|>"], | |
replace_eos=True, | |
) | |
register_template( | |
name="solar", | |
format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]), | |
format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]), | |
efficient_eos=True, | |
) | |
register_template( | |
name="starchat", | |
format_user=StringFormatter( | |
slots=[{"token": "<|user|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"}] | |
), | |
format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
stop_words=["<|end|>"], | |
replace_eos=True, | |
force_system=True, | |
) | |
register_template(name="vanilla") | |
register_template( | |
name="vicuna", | |
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), | |
default_system=( | |
"A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions." | |
), | |
) | |
register_template( | |
name="xuanyuan", | |
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]), | |
default_system=( | |
"以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头," | |
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、" | |
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n" | |
), | |
) | |
register_template(name="xverse", format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "])) | |
register_template( | |
name="yayi", | |
format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]), | |
format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]), | |
format_separator=EmptyFormatter(slots=["\n\n"]), | |
default_system=( | |
"You are a helpful, respectful and honest assistant named YaYi " | |
"developed by Beijing Wenge Technology Co.,Ltd. " | |
"Always answer as helpfully as possible, while being safe. " | |
"Your answers should not include any harmful, unethical, " | |
"racist, sexist, toxic, dangerous, or illegal content. " | |
"Please ensure that your responses are socially unbiased and positive in nature.\n\n" | |
"If a question does not make any sense, or is not factually coherent, " | |
"explain why instead of answering something not correct. " | |
"If you don't know the answer to a question, please don't share false information." | |
), | |
stop_words=["<|End|>"], | |
) | |
register_template( | |
name="yi", | |
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
stop_words=["<|im_end|>"], | |
replace_eos=True, | |
) | |
register_template( | |
name="yuan", | |
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
stop_words=["<eod>"], | |
replace_eos=True, | |
) | |
register_template( | |
name="zephyr", | |
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]), | |
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]), | |
default_system="You are a friendly chatbot who always responds in the style of a pirate", | |
) | |
register_template( | |
name="ziya", | |
format_user=StringFormatter(slots=[{"token": "<human>"}, ":{{content}}\n", {"token": "<bot>"}, ":"]), | |
format_separator=EmptyFormatter(slots=["\n"]), | |
) | |