from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union from ..extras.logging import get_logger from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter from .utils import Role, infer_max_len if TYPE_CHECKING: from transformers import PreTrainedTokenizer from .formatter import Formatter logger = get_logger(__name__) @dataclass class Template: format_user: "Formatter" format_assistant: "Formatter" format_system: "Formatter" format_function: "Formatter" format_observation: "Formatter" format_tools: "Formatter" format_separator: "Formatter" default_system: str stop_words: List[str] efficient_eos: bool replace_eos: bool force_system: bool def encode_oneturn( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: Optional[str] = None, tools: Optional[str] = None, cutoff_len: Optional[int] = 1_000_000, reserved_label_len: Optional[int] = 16, ) -> Tuple[List[int], List[int]]: r""" Returns a single pair of token ids representing prompt and response respectively. """ encoded_pairs = self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) prompt_ids = [] for query_ids, resp_ids in encoded_pairs[:-1]: prompt_ids += query_ids + resp_ids prompt_ids = prompt_ids + encoded_pairs[-1][0] answer_ids = encoded_pairs[-1][1] return prompt_ids, answer_ids def encode_multiturn( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: Optional[str] = None, tools: Optional[str] = None, cutoff_len: Optional[int] = 1_000_000, reserved_label_len: Optional[int] = 16, ) -> Sequence[Tuple[List[int], List[int]]]: r""" Returns multiple pairs of token ids representing prompts and responses respectively. """ return self._encode(tokenizer, messages, system, tools, cutoff_len, reserved_label_len) def _encode( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: str, tools: str, cutoff_len: int, reserved_label_len: int, ) -> Sequence[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. Turn 0: system + query resp Turn t: sep + query resp """ system = system or self.default_system encoded_messages = [] for i, message in enumerate(messages): elements = [] if i == 0 and (system or tools or self.force_system): tool_text = self.format_tools.apply(content=tools)[0] if tools else "" elements += self.format_system.apply(content=(system + tool_text)) elif i > 0 and i % 2 == 0: elements += self.format_separator.apply() if message["role"] == Role.USER: elements += self.format_user.apply(content=message["content"], idx=str(i // 2)) elif message["role"] == Role.ASSISTANT: elements += self.format_assistant.apply(content=message["content"]) elif message["role"] == Role.OBSERVATION: elements += self.format_observation.apply(content=message["content"]) elif message["role"] == Role.FUNCTION: elements += self.format_function.apply(content=message["content"]) else: raise NotImplementedError encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) def _convert_elements_to_ids( self, tokenizer: "PreTrainedTokenizer", elements: List[Union[str, Dict[str, str]]] ) -> List[int]: r""" Converts elements to token ids. """ token_ids = [] for elem in elements: if isinstance(elem, str): if len(elem) != 0: token_ids += tokenizer.encode(elem, add_special_tokens=False) elif isinstance(elem, dict): token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))] elif isinstance(elem, set): if "bos_token" in elem and tokenizer.bos_token_id: token_ids += [tokenizer.bos_token_id] elif "eos_token" in elem and tokenizer.eos_token_id: token_ids += [tokenizer.eos_token_id] else: raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem))) return token_ids def _make_pairs( self, encoded_messages: Sequence[List[int]], cutoff_len: int, reserved_label_len: int, ) -> Sequence[Tuple[List[int], List[int]]]: encoded_pairs = [] total_length = 0 for i in range(0, len(encoded_messages), 2): if total_length >= cutoff_len: break max_source_len, max_target_len = infer_max_len( source_len=len(encoded_messages[i]), target_len=len(encoded_messages[i + 1]), max_len=(cutoff_len - total_length), reserved_label_len=reserved_label_len, ) encoded_messages[i] = encoded_messages[i][:max_source_len] encoded_messages[i + 1] = encoded_messages[i + 1][:max_target_len] total_length += len(encoded_messages[i]) + len(encoded_messages[i + 1]) encoded_pairs.append((encoded_messages[i], encoded_messages[i + 1])) return encoded_pairs @dataclass class Llama2Template(Template): def _encode( self, tokenizer: "PreTrainedTokenizer", messages: List[Dict[str, str]], system: str, tools: str, cutoff_len: int, reserved_label_len: int, ) -> Sequence[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. Turn 0: system + query resp Turn t: sep + query resp """ system = system or self.default_system encoded_messages = [] for i, message in enumerate(messages): elements = [] system_text = "" if i == 0 and (system or tools or self.force_system): tool_text = self.format_tools.apply(content=tools)[0] if tools else "" system_text = self.format_system.apply(content=(system + tool_text))[0] elif i > 0 and i % 2 == 0: elements += self.format_separator.apply() if message["role"] == Role.USER: elements += self.format_user.apply(content=system_text + message["content"]) elif message["role"] == Role.ASSISTANT: elements += self.format_assistant.apply(content=message["content"]) elif message["role"] == Role.OBSERVATION: elements += self.format_observation.apply(content=message["content"]) elif message["role"] == Role.FUNCTION: elements += self.format_function.apply(content=message["content"]) else: raise NotImplementedError encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len) templates: Dict[str, Template] = {} def register_template( name: str, format_user: Optional["Formatter"] = None, format_assistant: Optional["Formatter"] = None, format_system: Optional["Formatter"] = None, format_function: Optional["Formatter"] = None, format_observation: Optional["Formatter"] = None, format_tools: Optional["Formatter"] = None, format_separator: Optional["Formatter"] = None, default_system: Optional[str] = "", stop_words: Optional[List[str]] = [], efficient_eos: Optional[bool] = False, replace_eos: Optional[bool] = False, force_system: Optional[bool] = False, ) -> None: eos_slots = [] if efficient_eos else [{"eos_token"}] template_class = Llama2Template if name.startswith("llama2") else Template default_user_formatter = StringFormatter(slots=["{{content}}"]) default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots) default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots) default_tool_formatter = ToolFormatter(slots="default") default_separator_formatter = EmptyFormatter() templates[name] = template_class( format_user=format_user or default_user_formatter, format_assistant=format_assistant or default_assistant_formatter, format_system=format_system or default_user_formatter, format_function=format_function or default_function_formatter, format_observation=format_observation or format_user or default_user_formatter, format_tools=format_tools or default_tool_formatter, format_separator=format_separator or default_separator_formatter, default_system=default_system, stop_words=stop_words, efficient_eos=efficient_eos, replace_eos=replace_eos, force_system=force_system, ) def get_template_and_fix_tokenizer(name: str, tokenizer: "PreTrainedTokenizer") -> Template: if tokenizer.eos_token_id is None: tokenizer.eos_token = "<|endoftext|>" logger.info("Add eos token: {}".format(tokenizer.eos_token)) if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token logger.info("Add pad token: {}".format(tokenizer.pad_token)) if name is None: # for pre-training return None template = templates.get(name, None) assert template is not None, "Template {} does not exist.".format(name) stop_words = template.stop_words if template.replace_eos: if not stop_words: raise ValueError("Stop words are required to replace the EOS token.") tokenizer.eos_token = stop_words[0] stop_words = stop_words[1:] logger.info("Replace eos token: {}".format(tokenizer.eos_token)) if stop_words: tokenizer.add_special_tokens( dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False ) logger.info("Add {} to stop words.".format(",".join(stop_words))) return template register_template( name="alpaca", format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]), format_separator=EmptyFormatter(slots=["\n\n"]), default_system=( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ), ) register_template( name="aquila", format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]), format_separator=EmptyFormatter(slots=["###"]), default_system=( "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions." ), stop_words=[""], efficient_eos=True, ) register_template( name="baichuan", format_user=StringFormatter(slots=[{"token": ""}, "{{content}}", {"token": ""}]), efficient_eos=True, ) register_template( name="baichuan2", format_user=StringFormatter(slots=[{"token": ""}, "{{content}}", {"token": ""}]), efficient_eos=True, ) register_template( name="belle", format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), format_separator=EmptyFormatter(slots=["\n\n"]), force_system=True, ) register_template( name="bluelm", format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]), ) register_template( name="chatglm2", format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]), format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), format_separator=EmptyFormatter(slots=["\n\n"]), efficient_eos=True, force_system=True, ) register_template( name="chatglm3", format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), format_assistant=StringFormatter(slots=["\n", "{{content}}"]), format_system=StringFormatter( slots=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"] ), format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]), format_observation=StringFormatter(slots=[{"token": "<|observation|>"}, "\n", "{{content}}"]), default_system=( "You are ChatGLM3, a large language model trained by Zhipu.AI. " "Follow the user's instructions carefully. Respond using markdown." ), stop_words=["<|user|>", "<|observation|>"], efficient_eos=True, ) register_template( name="codegeex2", format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]), force_system=True, ) register_template( name="deepseek", format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) register_template( name="deepseekcoder", format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:\n"]), format_separator=EmptyFormatter(slots=["\n", {"token": "<|EOT|>"}, "\n"]), default_system=( "You are an AI programming assistant, utilizing the Deepseek Coder model, " "developed by Deepseek Company, and you only answer questions related to computer science. " "For politically sensitive questions, security and privacy issues, " "and other non-computer science questions, you will refuse to answer\n" ), stop_words=["<|EOT|>"], efficient_eos=True, ) register_template( name="default", format_user=StringFormatter(slots=["Human: {{content}}\nAssistant: "]), format_separator=EmptyFormatter(slots=["\n"]), ) register_template( name="falcon", format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]), format_separator=EmptyFormatter(slots=["\n"]), efficient_eos=True, ) register_template( name="intern", format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": ""}, "\n<|Bot|>:"]), format_separator=EmptyFormatter(slots=[{"token": ""}, "\n"]), stop_words=[""], efficient_eos=True, ) register_template( name="intern2", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=[{"bos_token"}, "<|im_start|>system\n{{content}}<|im_end|>\n"]), format_separator=EmptyFormatter(slots=["\n"]), default_system=( "You are an AI assistant whose name is InternLM (书生·浦语).\n" "- InternLM (书生·浦语) is a conversational language model that is developed " "by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n" "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen " "by the user such as English and 中文." ), stop_words=["<|im_end|>"], efficient_eos=True, # internlm2 tokenizer cannot set eos_token_id ) register_template( name="llama2", format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), format_system=StringFormatter(slots=["<>\n{{content}}\n<>\n\n"]), default_system=( "You are a helpful, respectful and honest assistant. " "Always answer as helpfully as possible, while being safe. " "Your answers should not include any harmful, unethical, " "racist, sexist, toxic, dangerous, or illegal content. " "Please ensure that your responses are socially unbiased and positive in nature.\n\n" "If a question does not make any sense, or is not factually coherent, " "explain why instead of answering something not correct. " "If you don't know the answer to a question, please don't share false information." ), ) register_template( name="llama2_zh", format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), format_system=StringFormatter(slots=["<>\n{{content}}\n<>\n\n"]), default_system="You are a helpful assistant. 你是一个乐于助人的助手。", ) register_template( name="mistral", format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) register_template( name="openchat", format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]), format_assistant=StringFormatter(slots=["{{content}}"]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) register_template( name="orion", format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]), format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]), force_system=True, ) register_template( name="qwen", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), format_separator=EmptyFormatter(slots=["\n"]), default_system="You are a helpful assistant.", stop_words=["<|im_end|>"], replace_eos=True, ) register_template( name="solar", format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]), format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]), efficient_eos=True, ) register_template( name="starchat", format_user=StringFormatter( slots=[{"token": "<|user|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"}] ), format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n"]), format_separator=EmptyFormatter(slots=["\n"]), stop_words=["<|end|>"], replace_eos=True, force_system=True, ) register_template(name="vanilla") register_template( name="vicuna", format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), default_system=( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ), ) register_template( name="xuanyuan", format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]), default_system=( "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头," "会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、" "不安全、有争议、政治敏感等相关的话题、问题和指示。\n" ), ) register_template(name="xverse", format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "])) register_template( name="yayi", format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]), format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]), format_separator=EmptyFormatter(slots=["\n\n"]), default_system=( "You are a helpful, respectful and honest assistant named YaYi " "developed by Beijing Wenge Technology Co.,Ltd. " "Always answer as helpfully as possible, while being safe. " "Your answers should not include any harmful, unethical, " "racist, sexist, toxic, dangerous, or illegal content. " "Please ensure that your responses are socially unbiased and positive in nature.\n\n" "If a question does not make any sense, or is not factually coherent, " "explain why instead of answering something not correct. " "If you don't know the answer to a question, please don't share false information." ), stop_words=["<|End|>"], ) register_template( name="yi", format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), format_separator=EmptyFormatter(slots=["\n"]), stop_words=["<|im_end|>"], replace_eos=True, ) register_template( name="yuan", format_user=StringFormatter(slots=["{{content}}", {"token": ""}]), format_separator=EmptyFormatter(slots=["\n"]), stop_words=[""], replace_eos=True, ) register_template( name="zephyr", format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]), format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]), default_system="You are a friendly chatbot who always responds in the style of a pirate", ) register_template( name="ziya", format_user=StringFormatter(slots=[{"token": ""}, ":{{content}}\n", {"token": ""}, ":"]), format_separator=EmptyFormatter(slots=["\n"]), )