Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import os | |
from threading import Thread | |
from typing import Iterator | |
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 512 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "utter-project/EuroLLM-9B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 512, | |
temperature: float = 0.06, | |
top_p: float = 0.95, | |
top_k: int = 40, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
historical_text = "" | |
#Prepend the entire chat history to the message with new lines between each message | |
for user, assistant in chat_history: | |
historical_text += f"\n{user}\n{assistant}" | |
if len(historical_text) > 0: | |
message = historical_text + f"\n{message}" | |
input_ids = tokenizer([message], return_tensors="pt").input_ids | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
pad_token_id = tokenizer.eos_token_id, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=5, | |
early_stopping=False, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1.2, | |
step=0.1, | |
value=0.2, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["Describe the significance of the Eiffel Tower in French culture and history."], | |
["Что такое 'загадочная русская душа' и как это понятие отражается в русской литературе?"], # Russian: What is the "mysterious Russian soul" and how is this concept reflected in Russian literature? | |
["Jakie są najbardziej znane polskie tradycje bożonarodzeniowe?"], # Polish: What are the most well-known Polish Christmas traditions? | |
["Welche Rolle spielte die Hanse im mittelalterlichen Europa?"], # German: What role did the Hanseatic League play in medieval Europe? | |
["日本の茶道の精神と作法について説明してください。"] # Japanese: Please explain the spirit and etiquette of Japanese tea ceremony. | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |