nyuuzyou's picture
Update app.py
16ddfbb verified
raw
history blame
4.2 kB
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "utter-project/EuroLLM-9B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
@spaces.GPU(duration=30)
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 512,
temperature: float = 0.06,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
historical_text = ""
#Prepend the entire chat history to the message with new lines between each message
for user, assistant in chat_history:
historical_text += f"\n{user}\n{assistant}"
if len(historical_text) > 0:
message = historical_text + f"\n{message}"
input_ids = tokenizer([message], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.2,
step=0.1,
value=0.2,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Describe the significance of the Eiffel Tower in French culture and history."],
["Что такое 'загадочная русская душа' и как это понятие отражается в русской литературе?"], # Russian: What is the "mysterious Russian soul" and how is this concept reflected in Russian literature?
["Jakie są najbardziej znane polskie tradycje bożonarodzeniowe?"], # Polish: What are the most well-known Polish Christmas traditions?
["Welche Rolle spielte die Hanse im mittelalterlichen Europa?"], # German: What role did the Hanseatic League play in medieval Europe?
["日本の茶道の精神と作法について説明してください。"] # Japanese: Please explain the spirit and etiquette of Japanese tea ceremony.
],
)
with gr.Blocks(css="style.css") as demo:
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()