Spaces:
Running
Running
import os | |
from typing import List | |
import pandas as pd | |
DATASET_DIRECTORY = "dataset" | |
# COLUMNS_MAPPING = { | |
# "config.name": "Quantization", | |
# "config.backend.model": "Model", | |
# # primary measurements | |
# "report.prefill.throughput.value": "Prefill (tokens/s)", | |
# "report.decode.throughput.value": "Decode (tokens/s)", | |
# "report.memory": "Model Size (GB)", | |
# # deployment settings | |
# "config.backend.name": "Backend", | |
# "quantization": "Quantization", | |
# # additional information | |
# "#Params (B)": "Params (B)", | |
# } | |
SORTING_COLUMNS = ["Model Size (GB)", "Decode (tokens/s)", "Prefill (tokens/s)", "MMLU Accuracy"] | |
SORTING_ASCENDING = [False, True, True, True] | |
def get_raw_llm_perf_df( | |
machine: str, backends: List[str], hardware_type: str | |
): | |
dfs = [] | |
try: | |
dfs.append( | |
pd.read_csv("/Users/arnavchavan/leaderboard/benchmark_results_with_mmlu.csv") | |
# pd.read_csv( | |
# f"hf://datasets/nyunai/edge-llm-leaderboard/perf-df-{hardware_type}-{machine}-{backends}.csv" | |
# ) | |
) | |
except Exception: | |
print("Dataset not found for:") | |
print(f" • Machine: {machine}") | |
print(f" • Hardware Type: {hardware_type}") | |
url = f"https://huggingface.co/datasets/nyunai/edge-llm-leaderboard/blob/main/perf-df-{hardware_type}-{machine}-{backends}.csv" | |
print(f" • URL: {url}") | |
if len(dfs) == 0: | |
raise ValueError( | |
f"No datasets found for machine {machine}, check your hardware.yml config file or your datatset on huggingface" | |
) | |
perf_df = pd.concat(dfs) | |
# llm_df = pd.read_csv( | |
# "hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv" | |
# ) | |
# llm_perf_df = pd.merge( | |
# llm_df, perf_df, left_on="Model", right_on="config.backend.model" | |
# ) | |
return perf_df | |
def processed_llm_perf_df(llm_perf_df): | |
# llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply( | |
# process_architectures | |
# ) | |
# round numerical columns | |
llm_perf_df = llm_perf_df.round( | |
{ | |
"Prefill (tokens/s)": 3, | |
"Decode (tokens/s)": 3, | |
"Model Size (GB)": 3, | |
"#Params (B)": 3, | |
"MMLU Accuracy": 3, | |
} | |
) | |
# sort by metric | |
llm_perf_df.sort_values( | |
by=SORTING_COLUMNS, | |
ascending=SORTING_ASCENDING, | |
inplace=True, | |
) | |
return llm_perf_df | |
def get_llm_perf_df( | |
machine: str, backends: List[str], hardware_type: str | |
): | |
if not os.path.exists(DATASET_DIRECTORY): | |
os.makedirs(DATASET_DIRECTORY) | |
if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"): | |
llm_perf_df = pd.read_csv( | |
f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv" | |
) | |
else: | |
print(f"Dataset machine {machine} not found, downloading...") | |
llm_perf_df = get_raw_llm_perf_df(machine, backends, hardware_type) | |
llm_perf_df = processed_llm_perf_df(llm_perf_df) | |
llm_perf_df.to_csv( | |
f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False | |
) | |
return llm_perf_df | |