Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
from huggingface_hub import snapshot_download | |
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer | |
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union | |
import time | |
from .base_engine import BaseEngine | |
from ..configs import ( | |
MODEL_PATH, | |
) | |
FAKE_MODEL_PATH = os.environ.get("FAKE_MODEL_PATH", MODEL_PATH) | |
FAKE_RESPONSE = "Wow that's very very cool, please try again." | |
class DebugEngine(BaseEngine): | |
""" | |
It will always yield FAKE_RESPONSE | |
""" | |
def __init__(self, **kwargs) -> None: | |
super().__init__(**kwargs) | |
self._model = None | |
self._tokenizer = None | |
def tokenizer(self) -> PreTrainedTokenizer: | |
if self._tokenizer is None: | |
self._tokenizer = AutoTokenizer.from_pretrained(FAKE_MODEL_PATH, trust_remote_code=True) | |
return self._tokenizer | |
def load_model(self): | |
print(f"Load fake model with tokenizer: {self.tokenizer}") | |
def generate_yield_string(self, prompt, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs): | |
num_tokens = len(self.tokenizer.encode(prompt)) | |
response = FAKE_RESPONSE | |
for i in range(len(response)): | |
time.sleep(0.01) | |
yield response[:i], num_tokens | |
num_tokens = len(self.tokenizer.encode(prompt + response)) | |
yield response, num_tokens | |
def batch_generate(self, prompts, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs): | |
return [p + " -- Test" for p in prompts] | |