File size: 24,874 Bytes
699e2a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a4d3b8
 
 
 
 
 
 
 
 
699e2a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a94661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699e2a3
8a94661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699e2a3
8a94661
 
 
 
 
 
699e2a3
 
 
 
 
 
 
 
 
 
5150c06
699e2a3
be78530
ecab8cb
5150c06
161799a
 
5150c06
2afb552
306796b
699e2a3
161799a
898979c
 
 
 
 
 
2afb552
898979c
 
d6e08e4
45bccd7
306796b
45bccd7
306796b
59fa012
306796b
 
 
 
 
898979c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59fa012
161799a
306796b
161799a
 
306796b
2afb552
306796b
 
56c2b96
 
 
 
 
 
 
 
 
59fa012
 
 
 
 
 
45bccd7
59fa012
 
 
 
56c2b96
 
 
 
 
 
 
 
 
59fa012
56c2b96
161799a
699e2a3
161799a
306796b
5693b8f
77ec430
 
 
 
 
 
 
 
161799a
77ec430
 
 
161799a
77ec430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161799a
 
699e2a3
 
 
 
161799a
699e2a3
 
 
 
 
 
 
 
 
 
 
 
 
 
be78530
 
 
 
 
 
 
 
 
 
 
 
699e2a3
be78530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699e2a3
be78530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699e2a3
be78530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699e2a3
 
be78530
 
 
 
 
 
 
 
 
699e2a3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime

import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline, CatVTONPix2PixPipeline
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--base_model_path",
        type=str,
        default="booksforcharlie/stable-diffusion-inpainting",
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--p2p_base_model_path",
        type=str,
        default="timbrooks/instruct-pix2pix", 
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--resume_path",
        type=str,
        default="zhengchong/CatVTON",
        help=(
            "The Path to the checkpoint of trained tryon model."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="resource/demo/output",
        help="The output directory where the model predictions will be written.",
    )

    parser.add_argument(
        "--width",
        type=int,
        default=768,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--height",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--repaint", 
        action="store_true", 
        help="Whether to repaint the result image with the original background."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        default=True,
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="bf16",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args

def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


args = parse_args()

# Mask-based CatVTON
catvton_repo = "zhengchong/CatVTON"
repo_path = snapshot_download(repo_id=catvton_repo)
# Pipeline
pipeline = CatVTONPipeline(
    base_ckpt=args.base_model_path,
    attn_ckpt=repo_path,
    attn_ckpt_version="mix",
    weight_dtype=init_weight_dtype(args.mixed_precision),
    use_tf32=args.allow_tf32,
    device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
    densepose_ckpt=os.path.join(repo_path, "DensePose"),
    schp_ckpt=os.path.join(repo_path, "SCHP"),
    device='cuda', 
)


# # Flux-based CatVTON
# access_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
# flux_repo = "black-forest-labs/FLUX.1-Fill-dev"
# pipeline_flux = FluxTryOnPipeline.from_pretrained(flux_repo, use_auth_token=access_token)
# pipeline_flux.load_lora_weights(
#     os.path.join(repo_path, "flux-lora"), 
#     weight_name='pytorch_lora_weights.safetensors'
# )
# pipeline_flux.to("cuda", init_weight_dtype(args.mixed_precision))




@spaces.GPU(duration=120)
def submit_function(
    person_image,
    cloth_image,
    cloth_type,
    num_inference_steps,
    guidance_scale,
    seed,
    show_type
):
    person_image, mask = person_image["background"], person_image["layers"][0]
    mask = Image.open(mask).convert("L")
    if len(np.unique(np.array(mask))) == 1:
        mask = None
    else:
        mask = np.array(mask)
        mask[mask > 0] = 255
        mask = Image.fromarray(mask)

    tmp_folder = args.output_dir
    date_str = datetime.now().strftime("%Y%m%d%H%M%S")
    result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png")
    if not os.path.exists(os.path.join(tmp_folder, date_str[:8])):
        os.makedirs(os.path.join(tmp_folder, date_str[:8]))

    generator = None
    if seed != -1:
        generator = torch.Generator(device='cuda').manual_seed(seed)

    person_image = Image.open(person_image).convert("RGB")
    cloth_image = Image.open(cloth_image).convert("RGB")
    person_image = resize_and_crop(person_image, (args.width, args.height))
    cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
    
    # Process mask
    if mask is not None:
        mask = resize_and_crop(mask, (args.width, args.height))
    else:
        mask = automasker(
            person_image,
            cloth_type
        )['mask']
    mask = mask_processor.blur(mask, blur_factor=9)

    # Inference
    # try:
    result_image = pipeline(
        image=person_image,
        condition_image=cloth_image,
        mask=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator
    )[0]
    # except Exception as e:
    #     raise gr.Error(
    #         "An error occurred. Please try again later: {}".format(e)
    #     )
    
    # Post-process
    masked_person = vis_mask(person_image, mask)
    save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4)
    save_result_image.save(result_save_path)
    if show_type == "result only":
        return result_image
    else:
        width, height = person_image.size
        if show_type == "input & result":
            condition_width = width // 2
            conditions = image_grid([person_image, cloth_image], 2, 1)
        else:
            condition_width = width // 3
            conditions = image_grid([person_image, masked_person , cloth_image], 3, 1)
        conditions = conditions.resize((condition_width, height), Image.NEAREST)
        new_result_image = Image.new("RGB", (width + condition_width + 5, height))
        new_result_image.paste(conditions, (0, 0))
        new_result_image.paste(result_image, (condition_width + 5, 0))
    return new_result_image


# @spaces.GPU(duration=120)
# def submit_function_flux(
#     person_image,
#     cloth_image,
#     cloth_type,
#     num_inference_steps,
#     guidance_scale,
#     seed,
#     show_type
# ):

#     # Process image editor input
#     person_image, mask = person_image["background"], person_image["layers"][0]
#     mask = Image.open(mask).convert("L")
#     if len(np.unique(np.array(mask))) == 1:
#         mask = None
#     else:
#         mask = np.array(mask)
#         mask[mask > 0] = 255
#         mask = Image.fromarray(mask)

#     # Set random seed
#     generator = None
#     if seed != -1:
#         generator = torch.Generator(device='cuda').manual_seed(seed)

#     # Process input images
#     person_image = Image.open(person_image).convert("RGB")
#     cloth_image = Image.open(cloth_image).convert("RGB")
    
#     # Adjust image sizes
#     person_image = resize_and_crop(person_image, (args.width, args.height))
#     cloth_image = resize_and_padding(cloth_image, (args.width, args.height))

#     # Process mask
#     if mask is not None:
#         mask = resize_and_crop(mask, (args.width, args.height))
#     else:
#         mask = automasker(
#             person_image,
#             cloth_type
#         )['mask']
#     mask = mask_processor.blur(mask, blur_factor=9)

#     # Inference
#     result_image = pipeline_flux(
#         image=person_image,
#         condition_image=cloth_image,
#         mask_image=mask,
#         width=args.width,
#         height=args.height,
#         num_inference_steps=num_inference_steps,
#         guidance_scale=guidance_scale,
#         generator=generator
#     ).images[0]

#     # Post-processing
#     masked_person = vis_mask(person_image, mask)

#     # Return result based on show type
#     if show_type == "result only":
#         return result_image
#     else:
#         width, height = person_image.size
#         if show_type == "input & result":
#             condition_width = width // 2
#             conditions = image_grid([person_image, cloth_image], 2, 1)
#         else:
#             condition_width = width // 3
#             conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
        
#         conditions = conditions.resize((condition_width, height), Image.NEAREST)
#         new_result_image = Image.new("RGB", (width + condition_width + 5, height))
#         new_result_image.paste(conditions, (0, 0))
#         new_result_image.paste(result_image, (condition_width + 5, 0))
#         return new_result_image



def person_example_fn(image_path):
    return image_path


HEADER = ""

def app_gradio():
    with gr.Blocks(title="CatVTON") as demo:
         
        gr.Markdown(HEADER)
        with gr.Tab("Virtual Try on"):
            with gr.Row():
                
                # define root_path
                root_path = "resource/demo/example"

                
                # First column ==============================
                with gr.Column(scale=1, min_width=350):
                    # Person image
                    image_path = gr.Image(
                        type="filepath",
                        interactive=True,
                        visible=False,
                    )
                    person_image = gr.ImageEditor(
                        interactive=True, label="Person Image", type="filepath"
                    )
                    # Mask instruction
                    with gr.Row():
                        with gr.Column(scale = 2, min_width=80):
                            gr.Markdown(
                                '<span style="color: #808080; font-size: small;">NOTE: The model image must fully show the body parts in the area where you want to try on the clothes <br> Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
                            )
                        with gr.Column(scale = 1, min_width=80):
                            cloth_type = gr.Radio(
                                label="Try-On Cloth Type",
                                choices=["upper", "lower", "overall"],
                                value="upper",
                            )
                    # Model column examples
                    # Men examples
                    men_exm = gr.Examples(
                        examples=[
                            os.path.join(root_path, "person", "men", _)
                            for _ in os.listdir(os.path.join(root_path, "person", "men"))
                        ],
                        examples_per_page=4,
                        inputs=image_path,
                        label="Person Examples ①",
                    )
                    # Women examples
                    women_exm = gr.Examples(
                        examples=[
                            os.path.join(root_path, "person", "women", _)
                            for _ in os.listdir(os.path.join(root_path, "person", "women"))
                        ],
                        examples_per_page=4,
                        inputs=image_path,
                        label="Person Examples ②",
                    )
                    # Markdown: component display text in Gradio
                    gr.Markdown(
                        '<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
                    )
                                        
                        
                # Second column ==========================================    
                with gr.Column(scale=1, min_width=350):
                    # Clothes image
                    cloth_image = gr.Image(
                        interactive=True, label="Clothes Image", type="filepath"
                    )

                    # Clothes column examples
                    # Upper clothes examples
                    condition_upper_exm = gr.Examples(
                        examples=[
                            os.path.join(root_path, "condition", "upper", _)
                            for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
                        ],
                        examples_per_page=4,
                        inputs=cloth_image,
                        label="Upper clothes",
                    )
                    # Lower clothes examples
                    condition_upper_exm = gr.Examples(
                        examples=[
                            os.path.join(root_path, "condition", "lower", _)
                            for _ in os.listdir(os.path.join(root_path, "condition", "lower"))
                        ],
                        examples_per_page=4,
                        inputs=cloth_image,
                        label="Lower clothes",
                    )
                    # Full-body clothes examples
                    condition_overall_exm = gr.Examples(
                        examples=[
                            os.path.join(root_path, "condition", "overall", _)
                            for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
                        ],
                        examples_per_page=4,
                        inputs=cloth_image,
                        label="Full-body clothes",
                    )
                            

                        
            # Below ===============================================================
            with gr.Row():
                with gr.Column():
                    # Result pennal
                    result_image = gr.Image(interactive=False, label="Result")
                    
                    # Submit button
                    submit = gr.Button("Submit")
                    gr.Markdown(
                        '<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
                    )
                    # Advance options setting
                    gr.Markdown(
                        '<span style="color: #808080; font-size: small;">Advanced options can adjust details:<br>1. `Inference Step` may enhance details;<br>2. `CFG` is highly correlated with saturation;<br>3. `Random seed` may improve pseudo-shadow.</span>'
                    )
                    with gr.Accordion("Advanced Options", open=False):
                        num_inference_steps = gr.Slider(
                            label="Inference Step", minimum=10, maximum=100, step=5, value=50
                        )
                        # Guidence Scale
                        guidance_scale = gr.Slider(
                            label="CFG Strenth", minimum=0.0, maximum=7.5, step=0.5, value=2.5
                        )
                        # Random Seed
                        seed = gr.Slider(
                            label="Seed", minimum=-1, maximum=10000, step=1, value=42
                        )
                        show_type = gr.Radio(
                            label="Show Type",
                            choices=["result only", "input & result", "input & mask & result"],
                            value="result only",
                        )
                
                # event listener for changes to the image_path input component. Whenever the value of image_path changes (e.g., when a new image is uploaded or selected)
                image_path.change(
                    person_example_fn, inputs=image_path, outputs=person_image
                )

                # when submit button clicked
                submit.click(
                    submit_function,
                    [
                        person_image,
                        cloth_image,
                        cloth_type,
                        num_inference_steps,
                        guidance_scale,
                        seed,
                        show_type,
                    ],
                    result_image,
                )

        # with gr.Tab("Mask-based & Flux.1 Fill Dev"):
        #     with gr.Row():
        #         with gr.Column(scale=1, min_width=350):
        #             with gr.Row():
        #                 image_path_flux = gr.Image(
        #                     type="filepath",
        #                     interactive=True,
        #                     visible=False,
        #                 )
        #                 person_image_flux = gr.ImageEditor(
        #                     interactive=True, label="Person Image", type="filepath"
        #                 )
                    
        #             with gr.Row():
        #                 with gr.Column(scale=1, min_width=230):
        #                     cloth_image_flux = gr.Image(
        #                         interactive=True, label="Condition Image", type="filepath"
        #                     )
        #                 with gr.Column(scale=1, min_width=120):
        #                     gr.Markdown(
        #                         '<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
        #                     )
        #                     cloth_type = gr.Radio(
        #                         label="Try-On Cloth Type",
        #                         choices=["upper", "lower", "overall"],
        #                         value="upper",
        #                     )

        #             submit_flux = gr.Button("Submit")
        #             gr.Markdown(
        #                 '<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
        #             )
                    
        #             with gr.Accordion("Advanced Options", open=False):
        #                 num_inference_steps_flux = gr.Slider(
        #                     label="Inference Step", minimum=10, maximum=100, step=5, value=50
        #                 )
        #                 # Guidence Scale
        #                 guidance_scale_flux = gr.Slider(
        #                     label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
        #                 )
        #                 # Random Seed
        #                 seed_flux = gr.Slider(
        #                     label="Seed", minimum=-1, maximum=10000, step=1, value=42
        #                 )
        #                 show_type = gr.Radio(
        #                     label="Show Type",
        #                     choices=["result only", "input & result", "input & mask & result"],
        #                     value="input & mask & result",
        #                 )
                    
        #         with gr.Column(scale=2, min_width=500):
        #             result_image_flux = gr.Image(interactive=False, label="Result")
        #             with gr.Row():
        #                 # Photo Examples
        #                 root_path = "resource/demo/example"
        #                 with gr.Column():
        #                     gr.Examples(
        #                         examples=[
        #                             os.path.join(root_path, "person", "men", _)
        #                             for _ in os.listdir(os.path.join(root_path, "person", "men"))
        #                         ],
        #                         examples_per_page=4,
        #                         inputs=image_path_flux,
        #                         label="Person Examples ①",
        #                     )
        #                     gr.Examples(
        #                         examples=[
        #                             os.path.join(root_path, "person", "women", _)
        #                             for _ in os.listdir(os.path.join(root_path, "person", "women"))
        #                         ],
        #                         examples_per_page=4,
        #                         inputs=image_path_flux,
        #                         label="Person Examples ②",
        #                     )
        #                     gr.Markdown(
        #                         '<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
        #                     )
        #                 with gr.Column():
        #                     gr.Examples(
        #                         examples=[
        #                             os.path.join(root_path, "condition", "upper", _)
        #                             for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
        #                         ],
        #                         examples_per_page=4,
        #                         inputs=cloth_image_flux,
        #                         label="Condition Upper Examples",
        #                     )
        #                     gr.Examples(
        #                         examples=[
        #                             os.path.join(root_path, "condition", "overall", _)
        #                             for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
        #                         ],
        #                         examples_per_page=4,
        #                         inputs=cloth_image_flux,
        #                         label="Condition Overall Examples",
        #                     )
        #                     condition_person_exm = gr.Examples(
        #                         examples=[
        #                             os.path.join(root_path, "condition", "person", _)
        #                             for _ in os.listdir(os.path.join(root_path, "condition", "person"))
        #                         ],
        #                         examples_per_page=4,
        #                         inputs=cloth_image_flux,
        #                         label="Condition Reference Person Examples",
        #                     )
        #                     gr.Markdown(
        #                         '<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
        #                     )

                
        #         image_path_flux.change(
        #             person_example_fn, inputs=image_path_flux, outputs=person_image_flux
        #         )

        #         submit_flux.click(
        #             submit_function_flux,
        #             [person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, seed_flux, show_type],
        #             result_image_flux,
        #         )
        
            
        
        
    demo.queue().launch(share=True, show_error=True)


if __name__ == "__main__":
    app_gradio()