|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
from pathlib import Path |
|
|
|
from collections import namedtuple |
|
from typing import Optional, List, Union, Dict |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d |
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
|
|
import activations |
|
from utils import init_weights, get_padding |
|
from alias_free_torch.act import Activation1d as TorchActivation1d |
|
from env import AttrDict |
|
|
|
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download |
|
|
|
def load_hparams_from_json(path) -> AttrDict: |
|
with open(path) as f: |
|
data = f.read() |
|
h = json.loads(data) |
|
return AttrDict(h) |
|
|
|
class AMPBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): |
|
super(AMPBlock1, self).__init__() |
|
self.h = h |
|
|
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs1) + len(self.convs2) |
|
|
|
|
|
if self.h.get("use_cuda_kernel", False): |
|
|
|
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d |
|
Activation1d = CudaActivation1d |
|
else: |
|
Activation1d = TorchActivation1d |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
def forward(self, x): |
|
acts1, acts2 = self.activations[::2], self.activations[1::2] |
|
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): |
|
xt = a1(x) |
|
xt = c1(xt) |
|
xt = a2(xt) |
|
xt = c2(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class AMPBlock2(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): |
|
super(AMPBlock2, self).__init__() |
|
self.h = h |
|
|
|
self.convs = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs) |
|
|
|
|
|
if self.h.get("use_cuda_kernel", False): |
|
|
|
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d |
|
Activation1d = CudaActivation1d |
|
else: |
|
Activation1d = TorchActivation1d |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
def forward(self, x): |
|
for c, a in zip (self.convs, self.activations): |
|
xt = a(x) |
|
xt = c(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class BigVGAN( |
|
torch.nn.Module, |
|
PyTorchModelHubMixin, |
|
library_name="bigvgan", |
|
repo_url="https://github.com/NVIDIA/BigVGAN", |
|
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md", |
|
pipeline_tag="audio-to-audio", |
|
license="mit", |
|
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"] |
|
): |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
h, |
|
use_cuda_kernel: bool=False |
|
): |
|
super(BigVGAN, self).__init__() |
|
self.h = h |
|
self.h["use_cuda_kernel"] = use_cuda_kernel |
|
|
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
|
|
|
|
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) |
|
|
|
|
|
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 |
|
|
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
self.ups.append(nn.ModuleList([ |
|
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i), |
|
h.upsample_initial_channel // (2 ** (i + 1)), |
|
k, u, padding=(k - u) // 2)) |
|
])) |
|
|
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) |
|
|
|
|
|
if self.h.get("use_cuda_kernel", False): |
|
|
|
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d |
|
Activation1d = CudaActivation1d |
|
else: |
|
Activation1d = TorchActivation1d |
|
|
|
|
|
if h.activation == "snake": |
|
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
elif h.activation == "snakebeta": |
|
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
|
|
self.use_bias_at_final = h.get("use_bias_at_final", True) |
|
self.conv_post = weight_norm(Conv1d( |
|
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final |
|
)) |
|
|
|
|
|
for i in range(len(self.ups)): |
|
self.ups[i].apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
|
|
self.use_tanh_at_final = h.get("use_tanh_at_final", True) |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
|
|
for i_up in range(len(self.ups[i])): |
|
x = self.ups[i][i_up](x) |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
|
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
|
|
if self.use_tanh_at_final: |
|
x = torch.tanh(x) |
|
else: |
|
x = torch.clamp(x, min=-1., max=1.) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
for l_i in l: |
|
remove_weight_norm(l_i) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
|
|
|
|
|
|
def _save_pretrained(self, save_directory: Path) -> None: |
|
"""Save weights and config.json from a Pytorch model to a local directory.""" |
|
|
|
model_path = save_directory / 'bigvgan_generator.pt' |
|
torch.save( |
|
{'generator': self.state_dict()}, |
|
model_path |
|
) |
|
|
|
config_path = save_directory / 'config.json' |
|
with open(config_path, 'w') as config_file: |
|
json.dump(self.h, config_file, indent=4) |
|
|
|
@classmethod |
|
def _from_pretrained( |
|
cls, |
|
*, |
|
model_id: str, |
|
revision: str, |
|
cache_dir: str, |
|
force_download: bool, |
|
proxies: Optional[Dict], |
|
resume_download: bool, |
|
local_files_only: bool, |
|
token: Union[str, bool, None], |
|
map_location: str = "cpu", |
|
strict: bool = False, |
|
use_cuda_kernel: bool = False, |
|
**model_kwargs, |
|
): |
|
"""Load Pytorch pretrained weights and return the loaded model.""" |
|
|
|
|
|
|
|
|
|
config_file = hf_hub_download( |
|
repo_id=model_id, |
|
filename='config.json', |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
token=token, |
|
local_files_only=local_files_only, |
|
) |
|
h = load_hparams_from_json(config_file) |
|
|
|
|
|
|
|
|
|
if use_cuda_kernel: |
|
print(f"[INFO] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!") |
|
print(f"[INFO] You need nvcc and ninja installed in your system to build the kernel. For detail, see: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis") |
|
model = cls(h, use_cuda_kernel=use_cuda_kernel) |
|
|
|
|
|
|
|
|
|
if os.path.isdir(model_id): |
|
print("Loading weights from local directory") |
|
model_file = os.path.join(model_id, 'bigvgan_generator.pt') |
|
else: |
|
print(f"Downloading weights from {model_id}") |
|
model_file = hf_hub_download( |
|
repo_id=model_id, |
|
filename='bigvgan_generator.pt', |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
token=token, |
|
local_files_only=local_files_only, |
|
) |
|
|
|
checkpoint_dict = torch.load(model_file, map_location=map_location) |
|
model.load_state_dict(checkpoint_dict['generator']) |
|
|
|
return model |