File size: 15,502 Bytes
1de35a2 0d9e821 1de35a2 0d9e821 1de35a2 12d6a95 89fe793 1de35a2 12d6a95 1de35a2 0d9e821 1de35a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import os
import json
from pathlib import Path
from collections import namedtuple
from typing import Optional, List, Union, Dict
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
import activations
from utils import init_weights, get_padding
from alias_free_torch.act import Activation1d as TorchActivation1d
from env import AttrDict
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
def load_hparams_from_json(path) -> AttrDict:
with open(path) as f:
data = f.read()
h = json.loads(data)
return AttrDict(h)
class AMPBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
super(AMPBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
# faster CUDA kernel implementation of Activation1d
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
super(AMPBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # total number of conv layers
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
# faster CUDA kernel implementation of Activation1d
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
for c, a in zip (self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class BigVGAN(
torch.nn.Module,
PyTorchModelHubMixin,
library_name="bigvgan",
repo_url="https://github.com/NVIDIA/BigVGAN",
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
pipeline_tag="audio-to-audio",
license="mit",
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"]
):
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
# New in v2: if use_cuda_kernel is set to True, it loads optimized CUDA kernels for AMP.
# NOTE: use_cuda_kernel=True should be used for inference only (training is not supported).
def __init__(
self,
h,
use_cuda_kernel: bool=False
):
super(BigVGAN, self).__init__()
self.h = h
self.h["use_cuda_kernel"] = use_cuda_kernel # add it to global hyperparameters (h)
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# pre conv
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
# transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(nn.ModuleList([
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
h.upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k - u) // 2))
]))
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
if self.h.get("use_cuda_kernel", False):
# faster CUDA kernel implementation of Activation1d
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
Activation1d = CudaActivation1d
else:
Activation1d = TorchActivation1d
# post conv
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
else:
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
# whether to use bias for the final conv_post. Defaults to True for backward compatibility
self.use_bias_at_final = h.get("use_bias_at_final", True)
self.conv_post = weight_norm(Conv1d(
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final
))
# weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
# final tanh activation. Defaults to True for backward compatibility
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
def forward(self, x):
# pre conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
# final tanh activation
if self.use_tanh_at_final:
x = torch.tanh(x)
else:
x = torch.clamp(x, min=-1., max=1.) # bound the output to [-1, 1]
return x
def remove_weight_norm(self):
try:
print('Removing weight norm...')
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
except ValueError:
print('[INFO] Model already removed weight norm. Skipping!')
pass
##################################################################
# additional methods for huggingface_hub support
##################################################################
def _save_pretrained(self, save_directory: Path) -> None:
"""Save weights and config.json from a Pytorch model to a local directory."""
model_path = save_directory / 'bigvgan_generator.pt'
torch.save(
{'generator': self.state_dict()},
model_path
)
config_path = save_directory / 'config.json'
with open(config_path, 'w') as config_file:
json.dump(self.h, config_file, indent=4)
@classmethod
def _from_pretrained(
cls,
*,
model_id: str,
revision: str,
cache_dir: str,
force_download: bool,
proxies: Optional[Dict],
resume_download: bool,
local_files_only: bool,
token: Union[str, bool, None],
map_location: str = "cpu", # additional argument
strict: bool = False, # additional argument
use_cuda_kernel: bool = False,
**model_kwargs,
):
"""Load Pytorch pretrained weights and return the loaded model."""
##################################################################
# download and load hyperparameters (h) used by BigVGAN
##################################################################
if os.path.isdir(model_id):
print("Loading config.json from local directory")
config_file = os.path.join(model_id, 'config.json')
else:
config_file = hf_hub_download(
repo_id=model_id,
filename='config.json',
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
h = load_hparams_from_json(config_file)
##################################################################
# instantiate BigVGAN using h
##################################################################
if use_cuda_kernel:
print(f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!")
print(f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!")
print(f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis")
model = cls(h, use_cuda_kernel=use_cuda_kernel)
##################################################################
# download and load pretrained generator weight
##################################################################
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, 'bigvgan_generator.pt')
else:
print(f"Loading weights from {model_id}")
model_file = hf_hub_download(
repo_id=model_id,
filename='bigvgan_generator.pt',
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
token=token,
local_files_only=local_files_only,
)
checkpoint_dict = torch.load(model_file, map_location=map_location)
try:
model.load_state_dict(checkpoint_dict['generator'])
except RuntimeError:
print(f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!")
model.remove_weight_norm()
model.load_state_dict(checkpoint_dict['generator'])
return model |