Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
5 |
import torch
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
8 |
-
|
|
|
9 |
from transformers import NougatProcessor, VisionEncoderDecoderModel
|
10 |
|
11 |
# Set environment variables
|
@@ -92,11 +93,18 @@ def extract_text_from_pdf(pdf_bytes):
|
|
92 |
# Load Nougat model
|
93 |
processor, model = load_nougat_model()
|
94 |
|
95 |
-
# Convert PDF to images
|
96 |
-
|
97 |
full_text = ""
|
98 |
|
99 |
-
for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# Process with Nougat
|
101 |
pixel_values = processor(img, return_tensors="pt").pixel_values.to(model.device)
|
102 |
|
@@ -104,7 +112,7 @@ def extract_text_from_pdf(pdf_bytes):
|
|
104 |
outputs = model.generate(
|
105 |
pixel_values,
|
106 |
min_length=1,
|
107 |
-
max_new_tokens=1024,
|
108 |
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
109 |
)
|
110 |
|
@@ -113,6 +121,9 @@ def extract_text_from_pdf(pdf_bytes):
|
|
113 |
page_text = processor.post_process_generation(page_text, fix_markdown=True)
|
114 |
|
115 |
full_text += page_text + "\n\n"
|
|
|
|
|
|
|
116 |
|
117 |
# Clear GPU memory
|
118 |
del pixel_values, outputs
|
@@ -120,7 +131,9 @@ def extract_text_from_pdf(pdf_bytes):
|
|
120 |
|
121 |
return full_text
|
122 |
except Exception as e:
|
123 |
-
|
|
|
|
|
124 |
return default_paper_content
|
125 |
finally:
|
126 |
# Clear GPU memory
|
|
|
5 |
import torch
|
6 |
from io import BytesIO
|
7 |
from PIL import Image
|
8 |
+
import fitz # PyMuPDF
|
9 |
+
import numpy as np
|
10 |
from transformers import NougatProcessor, VisionEncoderDecoderModel
|
11 |
|
12 |
# Set environment variables
|
|
|
93 |
# Load Nougat model
|
94 |
processor, model = load_nougat_model()
|
95 |
|
96 |
+
# Convert PDF to images using PyMuPDF
|
97 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
98 |
full_text = ""
|
99 |
|
100 |
+
for page_num in range(len(doc)):
|
101 |
+
page = doc.load_page(page_num)
|
102 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(2, 2)) # 2x zoom for better quality
|
103 |
+
|
104 |
+
# Convert to PIL Image
|
105 |
+
img_data = pix.samples
|
106 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], img_data)
|
107 |
+
|
108 |
# Process with Nougat
|
109 |
pixel_values = processor(img, return_tensors="pt").pixel_values.to(model.device)
|
110 |
|
|
|
112 |
outputs = model.generate(
|
113 |
pixel_values,
|
114 |
min_length=1,
|
115 |
+
max_new_tokens=1024,
|
116 |
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
117 |
)
|
118 |
|
|
|
121 |
page_text = processor.post_process_generation(page_text, fix_markdown=True)
|
122 |
|
123 |
full_text += page_text + "\n\n"
|
124 |
+
|
125 |
+
# Print progress
|
126 |
+
print(f"Processed page {page_num+1}/{len(doc)}")
|
127 |
|
128 |
# Clear GPU memory
|
129 |
del pixel_values, outputs
|
|
|
131 |
|
132 |
return full_text
|
133 |
except Exception as e:
|
134 |
+
import traceback
|
135 |
+
error_details = traceback.format_exc()
|
136 |
+
print(f"PDF extraction error: {str(e)}\n{error_details}")
|
137 |
return default_paper_content
|
138 |
finally:
|
139 |
# Clear GPU memory
|