Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,14 @@
|
|
1 |
import torch
|
2 |
import re
|
3 |
import gradio as gr
|
4 |
-
# import streamlit as st
|
5 |
from PIL import Image
|
6 |
|
7 |
-
# st.title("Image Caption Generator")
|
8 |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
9 |
import os
|
10 |
import tensorflow as tf
|
11 |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
12 |
|
13 |
device='cpu'
|
14 |
-
# encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
15 |
-
# decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
16 |
-
# model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
17 |
-
|
18 |
-
# feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
19 |
-
# tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
20 |
-
# model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
21 |
-
|
22 |
-
# def predict(image, max_length=64, num_beams=4):
|
23 |
-
# image = image.convert('RGB')
|
24 |
-
# image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
25 |
-
# clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
|
26 |
-
# caption_ids = model.generate(image, max_length = max_length)[0]
|
27 |
-
# caption_text = clean_text(tokenizer.decode(caption_ids))
|
28 |
-
# return caption_text
|
29 |
|
30 |
model_id = "nttdataspain/vit-gpt2-coco-lora"
|
31 |
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
|
|
1 |
import torch
|
2 |
import re
|
3 |
import gradio as gr
|
|
|
4 |
from PIL import Image
|
5 |
|
|
|
6 |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
7 |
import os
|
8 |
import tensorflow as tf
|
9 |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
10 |
|
11 |
device='cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
model_id = "nttdataspain/vit-gpt2-coco-lora"
|
14 |
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|