Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# import streamlit as st | |
# import torch | |
# import re | |
# from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
# device='cpu' | |
# encoder_checkpoint = "ydshieh/vit-gpt2-coco-en" | |
# decoder_checkpoint = "ydshieh/vit-gpt2-coco-en" | |
# model_checkpoint = "ydshieh/vit-gpt2-coco-eng" | |
# feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
# tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
# model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
# def predict(image,max_length=64, num_beams=4): | |
# input_image = Image.open(image) | |
# model.eval() | |
# pixel_values = feature_extractor(images=[input_image], return_tensors="pt").pixel_values | |
# with torch.no_grad(): | |
# output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences | |
# preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
# preds = [pred.strip() for pred in preds] | |
# return preds[0] | |
# # image = image.convert('RGB') | |
# # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
# # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
# # caption_ids = model.generate(image, max_length = max_length)[0] | |
# # caption_text = clean_text(tokenizer.decode(caption_ids)) | |
# # return caption_text | |
# # st.title("Image to Text using Lora") | |
# inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
# output = gr.outputs.Textbox(type="text",label="Captions") | |
# description = "NTT Data Bilbao team" | |
# title = "Image to Text using Lora" | |
# interface = gr.Interface( | |
# fn=predict, | |
# description=description, | |
# inputs = inputs, | |
# theme="grass", | |
# outputs=output, | |
# title=title, | |
# ) | |
# interface.launch(debug=True) | |
import torch | |
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
device='cpu' | |
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(image, max_length = max_length)[0] | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
return caption_text | |
input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
output = gr.outputs.Textbox(type="auto",label="Captions") | |
examples = [f"example{i}.jpg" for i in range(1,7)] | |
title = "Image Captioning " | |
description = "Made by : shreyasdixit.tech" | |
interface = gr.Interface( | |
fn=predict, | |
description=description, | |
inputs = input, | |
theme="grass", | |
outputs=output, | |
examples = examples, | |
title=title, | |
) | |
interface.launch(debug=True) | |