File size: 14,368 Bytes
a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 a3a53e1 d3bd4e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import pickle
import numpy as np
import streamlit as st
from tensorflow.keras.models import load_model
def load_essential_models(scaler_6_path, scaler_8_path, scaler_full_path, clf_6_path, clf_8_path, clf_full_path):
scaler_6 = pickle.load(open(file=scaler_6_path, mode='rb'))
scaler_8 = pickle.load(open(file=scaler_8_path, mode='rb'))
scaler_21 = pickle.load(open(file=scaler_full_path, mode='rb'))
clf_6 = pickle.load(open(file=clf_6_path, mode='rb'))
clf_8 = load_model(clf_8_path, compile=False)
clf_21 = load_model(clf_full_path, compile=False)
return scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21
def convert_prediction(prediction):
if prediction == [0]:
return 'S'
elif prediction == [1]:
return 'M'
else:
return 'L'
scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21 = load_essential_models(scaler_6_path='./Models/6/scaler.pkl', scaler_8_path='./Models/8/scaler.pkl', scaler_full_path='./Models/21/scaler.pkl', clf_6_path='./Models/6/svc_fs_tune.pkl', clf_8_path='./Models/8/ANN_8.h5', clf_full_path='./Models/21/ANNs_full.h5')
st.title('Demo System for Vietnamese Woman Bra Size Classifier')
header_col_1, header_col_2 = st.columns([3, 2])
num_of_features = header_col_1.selectbox(label='Please select the number of measurements you have:', options=['6 measurements', '8 measurements', '21 measurements'])
# h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt = [0.0]*21
if num_of_features == '6 measurements':
sample_options_6 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
container_col_1, container_col_2, container_col_3 = st.columns([1, 1, 1])
if sample_options_6 == 'Sample 1 (Small)':
vtn = container_col_1.number_input(label='Your vtn: ', value=82.00, min_value=0.00, step=0.01)
vn = container_col_2.number_input(label='Your vn:', value=82.40, min_value=0.00, step=0.01)
vcn = container_col_3.number_input(label='Your vcn:', value=73.10, min_value=0.00, step=0.01)
cl = container_col_1.number_input(label='Your cl:', value=9.30, min_value=0.00, step=0.01)
ttp = container_col_2.number_input(label='Your ttp:', value=325.6, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Your ttt:', value=325.6, min_value=0.00, step=0.01)
elif sample_options_6 == 'Sample 2 (Medium)':
vtn = container_col_1.number_input(label='Your vtn: ', value=77.20, min_value=0.00, step=0.01)
vn = container_col_2.number_input(label='Your vn:', value=78.60, min_value=0.00, step=0.01)
vcn = container_col_3.number_input(label='Your vcn:', value=66.50, min_value=0.00, step=0.01)
cl = container_col_1.number_input(label='Your cl:', value=12.10, min_value=0.00, step=0.01)
ttp = container_col_2.number_input(label='Your ttp:', value=388.80, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Your ttt:', value=324.60, min_value=0.00, step=0.01)
else:
vtn = container_col_1.number_input(label='Your vtn: ', value=86.50, min_value=0.00, step=0.01)
vn = container_col_2.number_input(label='Your vn:', value=88.00, min_value=0.00, step=0.01)
vcn = container_col_3.number_input(label='Your vcn:', value=74.00, min_value=0.00, step=0.01)
cl = container_col_1.number_input(label='Your cl:', value=14.00, min_value=0.00, step=0.01)
ttp = container_col_2.number_input(label='Your ttp:', value=451.30, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Your ttt:', value=471.60, min_value=0.00, step=0.01)
elif num_of_features == '8 measurements':
sample_options_8 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
container_col_1, container_col_2, container_col_3, container_col_4 = st.columns([1, 1, 1, 1])
if sample_options_8 == 'Sample 1 (Small)':
ttp = container_col_1.number_input(label='Your ttp:', value=287.50, min_value=0.00, step=0.01)
cl = container_col_2.number_input(label='Your cl:', value=7.00, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Your cnnp:', value=8.50, min_value=0.00, step=0.01)
vn = container_col_4.number_input(label='Your vn:', value=74.50, min_value=0.00, step=0.01)
vtn = container_col_1.number_input(label='Your vtn: ', value=74.00, min_value=0.00, step=0.01)
cnnt = container_col_2.number_input(label='Your cnnt:', value=8.90, min_value=0.00, step=0.01)
cntp = container_col_3.number_input(label='Your cntp:', value=8.50, min_value=0.00, step=0.01)
vcn = container_col_4.number_input(label='Your vcn:', value=67.50, min_value=0.00, step=0.01)
elif sample_options_8 == 'Sample 2 (Medium)':
ttp = container_col_1.number_input(label='Your ttp:', value=489.60, min_value=0.00, step=0.01)
cl = container_col_2.number_input(label='Your cl:', value=13.00, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Your cnnp:', value=12.40, min_value=0.00, step=0.01)
vn = container_col_4.number_input(label='Your vn:', value=78.30, min_value=0.00, step=0.01)
vtn = container_col_1.number_input(label='Your vtn: ', value=77.20, min_value=0.00, step=0.01)
cnnt = container_col_2.number_input(label='Your cnnt:', value=11.60, min_value=0.00, step=0.01)
cntp = container_col_3.number_input(label='Your cntp:', value=8.70, min_value=0.00, step=0.01)
vcn = container_col_4.number_input(label='Your vcn:', value=65.30, min_value=0.00, step=0.01)
else:
ttp = container_col_1.number_input(label='Your ttp:', value=568.2, min_value=0.00, step=0.01)
cl = container_col_2.number_input(label='Your cl:', value=13.7, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Your cnnp:', value=14.0, min_value=0.00, step=0.01)
vn = container_col_4.number_input(label='Your vn:', value=88.7, min_value=0.00, step=0.01)
vtn = container_col_1.number_input(label='Your vtn: ', value=86.5, min_value=0.00, step=0.01)
cnnt = container_col_2.number_input(label='Your cnnt:', value=12.5, min_value=0.00, step=0.01)
cntp = container_col_3.number_input(label='Your cntp:', value=10.7, min_value=0.00, step=0.01)
vcn = container_col_4.number_input(label='Your vcn:', value=75.0, min_value=0.00, step=0.01)
else:
sample_options_21 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
container_col_1, container_col_2, container_col_3, container_col_4, container_col_5 = st.columns([1, 1, 1, 1, 1])
if sample_options_21 == 'Sample 1 (Small)':
h = container_col_1.number_input(label='Your h:', value=158.50, min_value=0.00, step=0.01)
w = container_col_2.number_input(label='Your w:', value=44.00, min_value=0.00, step=0.01)
bmi = container_col_3.number_input(label='Your bmi:', value=17.50, min_value=0.00, step=0.01)
vtn = container_col_4.number_input(label='Your vtn: ', value=75.40, min_value=0.00, step=0.01)
vn = container_col_5.number_input(label='Your vn:', value=81.10, min_value=0.00, step=0.01)
vcn = container_col_1.number_input(label='Your vcn:', value=74.80, min_value=0.00, step=0.01)
cn = container_col_2.number_input(label='Your cn:', value=14.50, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Your cnnp:', value=13.80, min_value=0.00, step=0.01)
cnnt = container_col_4.number_input(label='Your cnnt:', value=14.40, min_value=0.00, step=0.01)
cntp = container_col_5.number_input(label='Your cntp:', value=8.60, min_value=0.00, step=0.01)
cntt = container_col_1.number_input(label='Your cntt:', value=8.40, min_value=0.00, step=0.01)
ccnp = container_col_2.number_input(label='Your ccnp:', value=21.50, min_value=0.00, step=0.01)
ccnt = container_col_3.number_input(label='Your ccnt:', value=21.20, min_value=0.00, step=0.01)
snt = container_col_4.number_input(label='Your snt:', value=8.90, min_value=0.00, step=0.01)
sndp = container_col_5.number_input(label='Your sndp:', value=6.50, min_value=0.00, step=0.01)
sndt = container_col_1.number_input(label='Your sndt:', value=6.50, min_value=0.00, step=0.01)
xup = container_col_2.number_input(label='Your xup:', value=21.80, min_value=0.00, step=0.01)
xut = container_col_3.number_input(label='Your xut:', value=21.10, min_value=0.00, step=0.01)
cl = container_col_4.number_input(label='Your cl:', value=6.30, min_value=0.00, step=0.01)
ttp = container_col_5.number_input(label='Your ttp:', value=325.10, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Your ttt:', value=335.70, min_value=0.00, step=0.01)
elif sample_options_21 == 'Sample 2 (Medium)':
h = container_col_1.number_input(label='Your h:', value=163.00, min_value=0.00, step=0.01)
w = container_col_2.number_input(label='Your w:', value=43.00, min_value=0.00, step=0.01)
bmi = container_col_3.number_input(label='Your bmi:', value=16.20, min_value=0.00, step=0.01)
vtn = container_col_4.number_input(label='Your vtn: ', value=76.00, min_value=0.00, step=0.01)
vn = container_col_5.number_input(label='Your vn:', value=79.00, min_value=0.00, step=0.01)
vcn = container_col_1.number_input(label='Your vcn:', value=64.00, min_value=0.00, step=0.01)
cn = container_col_2.number_input(label='Your cn:', value=16.50, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Your cnnp:', value=13.10, min_value=0.00, step=0.01)
cnnt = container_col_4.number_input(label='Your cnnt:', value=12.60, min_value=0.00, step=0.01)
cntp = container_col_5.number_input(label='Your cntp:', value=9.20, min_value=0.00, step=0.01)
cntt = container_col_1.number_input(label='Your cntt:', value=9.10, min_value=0.00, step=0.01)
ccnp = container_col_2.number_input(label='Your ccnp:', value=19.80, min_value=0.00, step=0.01)
ccnt = container_col_3.number_input(label='Your ccnt:', value=18.20, min_value=0.00, step=0.01)
snt = container_col_4.number_input(label='Your snt:', value=8.40, min_value=0.00, step=0.01)
sndp = container_col_5.number_input(label='Your sndp:', value=3.50, min_value=0.00, step=0.01)
sndt = container_col_1.number_input(label='Your sndt:', value=3.70, min_value=0.00, step=0.01)
xup = container_col_2.number_input(label='Your xup:', value=21.00, min_value=0.00, step=0.01)
xut = container_col_3.number_input(label='Your xut:', value=20.50, min_value=0.00, step=0.01)
cl = container_col_4.number_input(label='Your cl:', value=15.00, min_value=0.00, step=0.01)
ttp = container_col_5.number_input(label='Your ttp:', value=521.60, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Your ttt:', value=513.50, min_value=0.00, step=0.01)
else:
h = container_col_1.number_input(label='Your h:', value=152.00, min_value=0.00, step=0.01)
w = container_col_2.number_input(label='Your w:', value=46.00, min_value=0.00, step=0.01)
bmi = container_col_3.number_input(label='Your bmi:', value=19.90, min_value=0.00, step=0.01)
vtn = container_col_4.number_input(label='Your vtn: ', value=77.50, min_value=0.00, step=0.01)
vn = container_col_5.number_input(label='Your vn:', value=85.50, min_value=0.00, step=0.01)
vcn = container_col_1.number_input(label='Your vcn:', value=70.40, min_value=0.00, step=0.01)
cn = container_col_2.number_input(label='Your cn:', value=18.90, min_value=0.00, step=0.01)
cnnp = container_col_3.number_input(label='Your cnnp:', value=13.50, min_value=0.00, step=0.01)
cnnt = container_col_4.number_input(label='Your cnnt:', value=12.50, min_value=0.00, step=0.01)
cntp = container_col_5.number_input(label='Your cntp:', value=10.30, min_value=0.00, step=0.01)
cntt = container_col_1.number_input(label='Your cntt:', value=10.50, min_value=0.00, step=0.01)
ccnp = container_col_2.number_input(label='Your ccnp:', value=20.40, min_value=0.00, step=0.01)
ccnt = container_col_3.number_input(label='Your ccnt:', value=20.10, min_value=0.00, step=0.01)
snt = container_col_4.number_input(label='Your snt:', value=8.50, min_value=0.00, step=0.01)
sndp = container_col_5.number_input(label='Your sndp:', value=5.50, min_value=0.00, step=0.01)
sndt = container_col_1.number_input(label='Your sndt:', value=4.20, min_value=0.00, step=0.01)
xup = container_col_2.number_input(label='Your xup:', value=19.50, min_value=0.00, step=0.01)
xut = container_col_3.number_input(label='Your xut:', value=20.50, min_value=0.00, step=0.01)
cl = container_col_4.number_input(label='Your cl:', value=15.10, min_value=0.00, step=0.01)
ttp = container_col_5.number_input(label='Your ttp:', value=625.80, min_value=0.00, step=0.01)
ttt = container_col_3.number_input(label='Your ttt:', value=585.40, min_value=0.00, step=0.01)
col_1, col_2, col_3, col_4, col_5 = st.columns([1, 1, 1, 1, 1])
with col_3:
predict = st.button(label='Predict', use_container_width=True)
if predict:
if num_of_features == '6 measurements':
X_6 = np.array([[vtn, vn, vcn, cl, ttp, ttt]])
X_6 = scaler_6.transform(X_6)
y_6 = clf_6.predict(X_6)
st.success(f'We recommend you choosing {convert_prediction(y_6)} size!')
elif num_of_features == '8 measurements':
X_8 = np.array([[ttp, cl, cnnp, vn, vtn, cnnt, cntp, vcn]])
X_8 = scaler_8.transform(X_8)
y_8 = clf_8.predict(X_8)
st.success(f'We recommend you choosing {convert_prediction(np.argmax(y_8, axis=1))} size!')
else:
X_21 = np.array([[h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt]])
X_21 = scaler_21.transform(X_21)
y_21 = clf_21.predict(X_21)
st.success(f'We recommend you choosing {convert_prediction(np.argmax(y_21, axis=1))} size!') |