ahmedJaafari's picture
Update app.py
8f12a98
raw
history blame
6.49 kB
import os
import time
import requests
import folium
import pandas as pd
from datetime import datetime
import streamlit as st
from streamlit_folium import st_folium
from utils import legend_macro
from huggingface_hub import HfApi
TOKEN = os.environ.get("HF_TOKEN", None)
api = HfApi(token=TOKEN)
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
if "sleep_time" not in st.session_state:
st.session_state.sleep_time = 2
if "auto_refresh" not in st.session_state:
st.session_state.auto_refresh = False
auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
if auto_refresh:
number = st.sidebar.number_input("Refresh rate in seconds", value=st.session_state.sleep_time)
st.session_state.sleep_time = number
session = requests.Session()
@st.cache_data(persist=True)
def parse_latlng_from_link(url):
try:
# extract latitude and longitude from gmaps link
if "@" not in url:
# We first need to get the redirect URL
resp = session.head(url, allow_redirects=True)
url = resp.url
latlng = url.split('@')[1].split(',')[0:2]
return [float(latlng[0]), float(latlng[1])]
except Exception as e:
print(f"Error parsing latlng from link: {e}")
return None
def parse_gg_sheet_interventions(url):
df = pd.read_csv(url)
return df.assign(latlng=df.iloc[:, 3].apply(parse_latlng_from_link))
def parse_gg_sheet(url):
url = url.replace("edit#gid=", "export?format=csv&gid=")
df = pd.read_csv(url)
# parse latlng (column 4) to [lat, lng]
def parse_latlng(latlng):
try:
lat, lng = latlng.split(",")
return [float(lat), float(lng)]
except Exception as e:
print(f"Error parsing latlng: {e}")
return None
return df.assign(latlng=df.iloc[:, 4].apply(parse_latlng))
df = parse_gg_sheet(
"https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
)
interventions_df = parse_gg_sheet_interventions(
"https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/gviz/tq?tqx=out:csv"
)
# select requests
headers_mapping = {
"إغاثة": "Rescue/إغاثة",
"مساعدة طبية": "Medical Assistance/مساعدة طبية",
"مأوى": "Shelter/مأوى",
"طعام وماء": "Food & Water/طعام وماء",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)": "Danger/مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
}
colors_mapping = {
"إغاثة": "red",
"مساعدة طبية": "orange",
"مأوى": "beige",
"طعام وماء": "blue",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)": "gray",
}
icon_mapping = {
"إغاثة": "bell", # life ring icon for rescue
"مساعدة طبية": "heart", # medical kit for medical assistance
"مأوى": "home", # home icon for shelter
"طعام وماء": "cutlery", # cutlery (fork and knife) for food & water
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)": "Warning" # warning triangle for dangers
}
options = ["إغاثة", "مساعدة طبية", "مأوى", "طعام وماء", "مخاطر (تسرب الغاز، تلف في الخدمات العامة...)"]
selected_options = []
st.markdown("👉 **Choose request type / اختر نوع الطلب**")
col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4])
cols = [col1, col2, col3, col4, col5]
for i, option in enumerate(options):
#checked = cols[i].checkbox(headers_mapping[option], value=True)
#if checked:
selected_options.append(headers_mapping[option])
arabic_options = [e.split("/")[1] for e in selected_options]
df['id'] = df.index
filtered_df = df[df['ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)'].isin(arabic_options)]
selected_headers = [headers_mapping[request] for request in arabic_options]
# select interventions
st.markdown("👇 **View past or planned interventions / عرض عمليات المساعدة السابقة أو المخطط لها**")
show_interventions = st.checkbox("Display Interventions عرض التدخلات", value=True)
m = folium.Map(
location=[31.228674, -7.992047],
zoom_start=8.5,
min_zoom=8.5,
max_lat=35.628674,
min_lat=29.628674,
max_lon=-4.992047,
min_lon=-10.992047,
max_bounds=True,
)
if show_interventions:
for index, row in interventions_df.iterrows():
status = "Done ✅" if row[interventions_df.columns[5]]!="Intervention prévue dans le futur / Planned future intervention" else "Planned ⌛"
color_mk = "green" if row[interventions_df.columns[5]]!="Intervention prévue dans le futur / Planned future intervention" else "pink"
intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
org = row[interventions_df.columns[1]]
city = row[interventions_df.columns[9]]
date = row[interventions_df.columns[4]]
intervention_info = f"<b>Status:</b> {status}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>📅 Date:</b> {date}"
if row["latlng"] is None:
continue
folium.Marker(
location=row["latlng"],
tooltip=city,
popup=folium.Popup(intervention_info, max_width=300),
icon=folium.Icon(color=color_mk)
).add_to(m)
for index, row in filtered_df.iterrows():
request_type = row['ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)']
display_text = f"<b>Request Type:</b> {request_type}<br><b>Id:</b> {row['id']}"
icon_name = icon_mapping.get(request_type, 'info-sign')
if row["latlng"] is None:
continue
folium.Marker(
location=row["latlng"],
tooltip=row[' لأي جماعة / قيادة / دوار تنتمون ؟'] if not pd.isna(row[' لأي جماعة / قيادة / دوار تنتمون ؟']) else None,
popup=folium.Popup(display_text, max_width=300),
icon=folium.Icon(color=colors_mapping.get(request_type, "blue"), icon=icon_name)
).add_to(m)
# Macro to add legend
m.get_root().add_child(legend_macro)
st_data = st_folium(m, use_container_width=True)
if auto_refresh:
time.sleep(number)
st.experimental_rerun()