Spaces:
Running
Running
File size: 13,461 Bytes
9ed4a42 1e15fb5 9ed4a42 1e15fb5 9ed4a42 1e15fb5 9ed4a42 1e15fb5 9ed4a42 1e15fb5 c2b8e1c 1e15fb5 9ed4a42 1e15fb5 9ed4a42 1e15fb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os
import time
from datetime import datetime
import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium
from src.text_content import (
COLOR_MAPPING,
CREDITS_TEXT,
HEADERS_MAPPING,
ICON_MAPPING,
INTRO_TEXT_AR,
INTRO_TEXT_EN,
INTRO_TEXT_FR,
LOGO,
REVIEW_TEXT,
SLOGAN,
)
from src.utils import add_latlng_col, init_map, parse_gg_sheet
TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)
# Initialize Streamlit Config
st.set_page_config(
layout="wide",
initial_sidebar_state="collapsed",
page_icon="🤝",
page_title="Nt3awnou Map نتعاونو",
)
# """
# <style>
# .block-container {
# padding-top: 1rem;
# padding-bottom: 0rem;
# }
# </style>
# <div style="text-align: center;">
# <img src="https://storage.googleapis.com/storage-annarabic/Nt3awnou(1).png" width="200" height="200">
# </div>
# """
st.markdown(
"""
<style>
.block-container {
padding-top: 0rem;
padding-bottom: 0rem;
padding-left: 0rem;
padding-right: 0rem;
}
.awesome-marker i {
font-size: 11px;
margin-top: 8px;
}
</style>
""",
unsafe_allow_html=True,
)
# # Initialize States
# if "sleep_time" not in st.session_state:
# st.session_state.sleep_time = 2
# if "auto_refresh" not in st.session_state:
# st.session_state.auto_refresh = False
# auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
# if auto_refresh:
# number = st.sidebar.number_input(
# "Refresh rate in seconds", value=st.session_state.sleep_time
# )
# st.session_state.sleep_time = number
# Streamlit functions
def display_interventions(interventions_df):
"""Display NGO interventions on the map"""
for index, row in interventions_df.iterrows():
village_status = row[interventions_df.columns[7]]
if pd.isna(village_status):
continue
if (
row[interventions_df.columns[5]]
== "Intervention prévue dans le futur / Planned future intervention"
):
# future intervention
color_mk = "pink"
status = "Planned ⌛"
elif (
row[interventions_df.columns[5]]
!= "Intervention prévue dans le futur / Planned future intervention"
and village_status
!= "Critique, Besoin d'aide en urgence / Critical, in urgent need of help"
):
# past intervention and village not in a critical condition
color_mk = "green"
status = "Done ✅"
else:
color_mk = "darkgreen"
status = "Partial ⚠️"
intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
org = row[interventions_df.columns[1]]
city = row[interventions_df.columns[9]]
date = row[interventions_df.columns[4]]
population = row[interventions_df.columns[11]]
intervention_info = f"<b>Intervention Status:</b> {status}<br><b>Village Status:</b> {village_status.split('/')[0]}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>Population:</b> {population}<br><b>📅 Date:</b> {date}"
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=city,
popup=folium.Popup(intervention_info, max_width=300),
icon=folium.Icon(color=color_mk),
))
def show_requests(filtered_df):
"""Display victim requests on the map"""
for index, row in filtered_df.iterrows():
request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
long_lat = row[
"هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
]
maps_url = f"https://maps.google.com/?q={long_lat}"
display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
icon_name = ICON_MAPPING.get(request_type, "info-sign")
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=row[" لأي جماعة / قيادة / دوار تنتمون ؟"]
if not pd.isna(row[" لأي جماعة / قيادة / دوار تنتمون ؟"])
else None,
popup=folium.Popup(display_text, max_width=300),
icon=folium.Icon(
color=COLOR_MAPPING.get(request_type, "blue"), icon=icon_name
),
))
def display_google_sheet_tables(data_url):
"""Display the google sheet tables for requests and interventions"""
st.markdown(
f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""",
unsafe_allow_html=True,
)
def display_dataframe(df, drop_cols, data_url, search_id=True, status=False, for_help_requests=False):
"""Display the dataframe in a table"""
col_1, col_2 = st.columns([1, 1])
with col_1:
query = st.text_input(
"🔍 Search for information / بحث عن المعلومات",
key=f"search_requests_{int(search_id)}",
)
with col_2:
if search_id:
id_number = st.number_input(
"🔍 Search for an id / بحث عن رقم",
min_value=0,
max_value=len(filtered_df),
value=0,
step=1,
)
if status:
selected_status = st.selectbox(
"🗓️ Status / حالة",
["all / الكل", "Done / تم", "Planned / مخطط لها"],
key="status",
)
if query:
# Filtering the dataframe based on the query
mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
display_df = df[mask]
else:
display_df = df
display_df = display_df.drop(drop_cols, axis=1)
if search_id and id_number:
display_df = display_df[display_df["id"] == id_number]
if status:
target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
if selected_status == "Done / تم":
display_df = display_df[
display_df[target] == "Intervention déjà passée / Past intevention"
]
elif selected_status == "Planned / مخطط لها":
display_df = display_df[
display_df[target] != "Intervention déjà passée / Past intevention"
]
st.dataframe(display_df, height=500)
st.markdown(
f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
)
# if we want to check hidden contact information
if for_help_requests:
st.markdown(
"We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at [email protected]",
)
st.markdown(
"""
<div style="text-align: left;">
<a href="mailto:[email protected]">[email protected]</a> نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على
</div>
""",
unsafe_allow_html=True,
)
def id_review_submission():
"""Id review submission form"""
st.subheader("🔍 Review of requests")
st.markdown(REVIEW_TEXT)
id_to_review = st.number_input(
"Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
)
reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
if st.button("Submit / أرسل"):
if reason_for_review == "":
st.error("Please enter a reason / الرجاء إدخال سبب")
else:
filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
with open(filename, "w") as f:
f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
api.upload_file(
path_or_fileobj=filename,
path_in_repo=filename,
repo_id="nt3awnou/review_requests",
repo_type="dataset",
)
st.success(
"Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
)
# # Logo and Title
# st.markdown(LOGO, unsafe_allow_html=True)
# # st.title("Nt3awnou نتعاونو")
# st.markdown(SLOGAN, unsafe_allow_html=True)
# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column=12)
m = init_map()
fg = folium.FeatureGroup(name="Markers")
# Selection of requests
options = [
"إغاثة",
"مساعدة طبية",
"مأوى",
"طعام وماء",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []
df["id"] = df.index
filtered_df = df
display_interventions(interventions_df)
# # Show requests
show_requests(df)
st_folium(m, use_container_width=True, returned_objects=[], feature_group_to_add=fg, key="map")
# tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
# with tab_en:
# st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True)
# with tab_ar:
# st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True)
# with tab_fr:
# st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True)
# # Requests table
# st.divider()
# st.subheader("📝 **Table of requests / جدول الطلبات**")
# drop_cols = [
# "(عند الامكان) رقم هاتف شخص موجود في عين المكان",
# "الرجاء الضغط على الرابط التالي لمعرفة موقعك إذا كان متاحا",
# "GeoStamp",
# "GeoCode",
# "GeoAddress",
# "Status",
# "id",
# ]
# display_dataframe(filtered_df, drop_cols, REQUESTS_URL, search_id=True, for_help_requests=True)
# # Interventions table
# st.divider()
# st.subheader("📝 **Table of interventions / جدول التدخلات**")
# display_dataframe(
# interventions_df,
# [], # We show NGOs contact information
# INTERVENTIONS_URL,
# search_id=False,
# status=True,
# for_help_requests=False,
# )
# # Submit an id for review
# st.divider()
# id_review_submission()
# # Donations can be made to the gouvernmental fund under the name
# st.divider()
# st.subheader("📝 **Donations / التبرعات / Dons**")
# tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
# with tab_en:
# st.markdown(
# """
# <div style="text-align: center;">
# <h4>The official bank account dedicated to tackle the consequences of the earthquake is:</h4>
# <b>Account number:</b>
# <h2>126</h2>
# <b>RIB:</b> 001-810-0078000201106203-18
# <br>
# <b>For the money transfers coming from outside Morocco</b>
# <br>
# <b>IBAN:</b> MA64001810007800020110620318
# <br>
# """,
# unsafe_allow_html=True,
# )
# with tab_ar:
# st.markdown(
# """
# <div style="text-align: center;">
# <h4>الحساب البنكي الرسمي المخصص لمواجهة عواقب الزلزال</h4>
# <b>رقم الحساب</b>
# <h2>126</h2>
# <b>RIB:</b> 001-810-0078000201106203-18
# <br>
# <b>للتحويلات القادمة من خارج المغرب</b>
# <br>
# <b>IBAN:</b> MA64001810007800020110620318
# <br>
# </div>
# """,
# unsafe_allow_html=True,
# )
# with tab_fr:
# st.markdown(
# """
# <div style="text-align: center;">
# <h4>Le compte bancaire officiel dédié à la lutte contre les conséquences du séisme est le suivant:</h4>
# <b>Numéro de compte:</b>
# <h2>126</h2>
# <b>RIB:</b> 001-810-0078000201106203-18
# <br>
# <b>Pour les transferts d'argent en provenance de l'étranger</b>
# <br>
# <b>IBAN:</b> MA64001810007800020110620318
# <br>
# """,
# unsafe_allow_html=True,
# )
# # Credits
# st.markdown(
# CREDITS_TEXT,
# unsafe_allow_html=True,
# )
# if auto_refresh:
# time.sleep(number)
# st.experimental_rerun()
|