File size: 10,651 Bytes
9ed4a42
 
1e15fb5
 
9ed4a42
 
 
 
1e15fb5
9ed4a42
1e15fb5
 
 
 
 
4b6607c
9ed4a42
20cc4aa
 
 
 
 
 
9ed4a42
1e15fb5
 
 
 
 
 
 
 
 
 
 
9ed4a42
1e15fb5
99e8772
 
 
 
 
 
1e15fb5
 
 
 
 
 
 
 
 
 
c2b8e1c
 
 
 
 
1e15fb5
 
 
9ed4a42
 
1e15fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b6607c
 
 
1e15fb5
 
 
 
4b6607c
1e15fb5
4b6607c
1e15fb5
 
 
 
 
 
 
 
 
 
4b6607c
1e15fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b6607c
 
 
 
 
 
1e15fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ed4a42
 
4b6607c
 
 
 
 
 
 
 
 
 
 
 
 
 
1e15fb5
4b6607c
 
 
 
 
 
 
 
 
1e15fb5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import time
from datetime import datetime

import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium

from src.text_content import (
    COLOR_MAPPING,
    ICON_MAPPING,
    REVIEW_TEXT,
)
from src.utils import add_latlng_col, init_map, parse_gg_sheet, is_request_in_list, marker_request


import os
os.environ['STREAMLIT_UI_HIDE_SIDEBAR_NAV'] = 'True'
os.environ['STREAMLIT_UI_HIDE_TOP_BAR'] = 'True'


TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)


# Initialize Streamlit Config
st.set_page_config(
    layout="wide",
    initial_sidebar_state="collapsed",
    page_icon="🤝",
    page_title="Nt3awnou Map نتعاونو",
)

hide_menu_style = """
        <style>
        #MainMenu {visibility: hidden;}
        </style>
        """
st.markdown(hide_menu_style, unsafe_allow_html=True)

st.markdown(
    """
<style>
    .block-container {
        padding-top: 0rem;
        padding-bottom: 0rem;
        padding-left: 0rem;
        padding-right: 0rem;
    }

    .awesome-marker i {
        font-size: 11px;
        margin-top: 8px;
    }
</style>
""",
    unsafe_allow_html=True,
)

def display_interventions(interventions_df):
    """Display NGO interventions on the map"""
    for index, row in interventions_df.iterrows():
        village_status = row[interventions_df.columns[7]]
        if pd.isna(village_status):
            continue
        if (
            row[interventions_df.columns[5]]
            == "Intervention prévue dans le futur / Planned future intervention"
        ):
            # future intervention
            color_mk = "pink"
            status = "Planned ⌛"
        elif (
            row[interventions_df.columns[5]]
            != "Intervention prévue dans le futur / Planned future intervention"
            and village_status
            != "Critique, Besoin d'aide en urgence / Critical, in urgent need of help"
        ):
            # past intervention  and village not in a critical condition
            color_mk = "green"
            status = "Done ✅"

        else:
            color_mk = "darkgreen"
            status = "Partial ⚠️"

        intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
        org = row[interventions_df.columns[1]]
        city = row[interventions_df.columns[9]]
        date = row[interventions_df.columns[4]]
        population = row[interventions_df.columns[11]]
        intervention_info = f"<b>Intervention Status:</b> {status}<br><b>Village Status:</b> {village_status.split('/')[0]}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>Population:</b> {population}<br><b>📅 Date:</b> {date}"
        if row["latlng"] is None:
            continue
        
        fg.add_child(folium.Marker(
            location=row["latlng"],
            tooltip=city,
            popup=folium.Popup(intervention_info, max_width=300),
            icon=folium.Icon(color=color_mk),
        ))


def show_requests(filtered_df):
    """Display victim requests on the map"""
    for index, row in filtered_df.iterrows():
        request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
        displayed_request = marker_request(request_type)
        if pd.isna(request_type):
            continue
        long_lat = row[
            "هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
        ]
        maps_url = f"https://maps.google.com/?q={long_lat}"
        # we display all requests in popup text and use the first one for the icon/color
        display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
        icon_name = ICON_MAPPING.get(displayed_request, None)
        if row["latlng"] is None:
            continue

        fg.add_child(folium.Marker(
            location=row["latlng"],
            tooltip=row["  لأي  جماعة / قيادة / دوار تنتمون ؟"]
            if not pd.isna(row["  لأي  جماعة / قيادة / دوار تنتمون ؟"])
            else None,
            popup=folium.Popup(display_text, max_width=300),
            icon=folium.Icon(
                color=COLOR_MAPPING.get(displayed_request, "blue"), icon=icon_name
            ),
        ))


def display_google_sheet_tables(data_url):
    """Display the google sheet tables for requests and interventions"""
    st.markdown(
        f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""",
        unsafe_allow_html=True,
    )


def display_dataframe(df, drop_cols, data_url, search_id=True, status=False, for_help_requests=False):
    """Display the dataframe in a table"""
    col_1, col_2 = st.columns([1, 1])

    with col_1:
        query = st.text_input(
            "🔍 Search for information / بحث عن المعلومات",
            key=f"search_requests_{int(search_id)}",
        )
    with col_2:
        if search_id:
            id_number = st.number_input(
                "🔍 Search for an id / بحث عن رقم",
                min_value=0,
                max_value=len(filtered_df),
                value=0,
                step=1,
            )
        if status:
            selected_status = st.selectbox(
                "🗓️ Status / حالة",
                ["all / الكل", "Done / تم", "Planned / مخطط لها"],
                key="status",
            )

    if query:
        # Filtering the dataframe based on the query
        mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
        display_df = df[mask]
    else:
        display_df = df

    display_df = display_df.drop(drop_cols, axis=1)

    if search_id and id_number:
        display_df = display_df[display_df["id"] == id_number]

    if status:
        target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
        if selected_status == "Done / تم":
            display_df = display_df[
                display_df[target] == "Intervention déjà passée / Past intevention"
            ]

        elif selected_status == "Planned / مخطط لها":
            display_df = display_df[
                display_df[target] != "Intervention déjà passée / Past intevention"
            ]

    st.dataframe(display_df, height=500)
    st.markdown(
        f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
    )
    # if we want to check hidden contact information
    if for_help_requests:
        st.markdown(
            "We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at [email protected]",
        )
        st.markdown(
            """
                    <div style="text-align: left;">
                    <a href="mailto:[email protected]">[email protected]</a> نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على 
                    </div>
                    """,
            unsafe_allow_html=True,
        )


def id_review_submission():
    """Id review submission form"""
    st.subheader("🔍 Review of requests")
    st.markdown(REVIEW_TEXT)

    id_to_review = st.number_input(
        "Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
    )
    reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
    if st.button("Submit / أرسل"):
        if reason_for_review == "":
            st.error("Please enter a reason / الرجاء إدخال سبب")
        else:
            filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
            with open(filename, "w") as f:
                f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
            api.upload_file(
                path_or_fileobj=filename,
                path_in_repo=filename,
                repo_id="nt3awnou/review_requests",
                repo_type="dataset",
            )
            st.success(
                "Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
            )


# # Logo and Title
# st.markdown(LOGO, unsafe_allow_html=True)
# # st.title("Nt3awnou نتعاونو")
# st.markdown(SLOGAN, unsafe_allow_html=True)

# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column=12)
m = init_map()
fg = folium.FeatureGroup(name="Markers")

# Selection of requests
options = [
    "إغاثة",
    "مساعدة طبية",
    "مأوى",
    "طعام وماء",
    "مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []



# st.markdown(
#     "👉 **Choose request type | Choissisez le type de demande | اختر نوع الطلب**"
# )
# col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4])
# cols = [col1, col2, col3, col4, col5]

# for i, option in enumerate(options):
#     checked = cols[i].checkbox(HEADERS_MAPPING[option], value=True)
#     if checked:
#         selected_options.append(option)


df["id"] = df.index
# keep rows with at least one request in selected_options
filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].apply(
    lambda x: is_request_in_list(x, selected_options)
)]

# # keep rows with at least one request in selected_options
# filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].apply(
#     lambda x: is_request_in_list(x, selected_options)
# )]

display_interventions(interventions_df)

# # Show requests
show_requests(df)

st_folium(m, use_container_width=True, returned_objects=[], feature_group_to_add=fg, key="map")