Create ipown.py
Browse files
ipown.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
7 |
+
from PIL import Image
|
8 |
+
from safetensors import safe_open
|
9 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
10 |
+
|
11 |
+
from attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
|
12 |
+
from utils import is_torch2_available
|
13 |
+
|
14 |
+
USE_DAFAULT_ATTN = False # should be True for visualization_attnmap
|
15 |
+
if is_torch2_available() and (not USE_DAFAULT_ATTN):
|
16 |
+
from attention_processor_faceid import (
|
17 |
+
LoRAAttnProcessor2_0 as LoRAAttnProcessor,
|
18 |
+
)
|
19 |
+
from attention_processor_faceid import (
|
20 |
+
LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor,
|
21 |
+
)
|
22 |
+
else:
|
23 |
+
from attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
|
24 |
+
from resampler import PerceiverAttention, FeedForward
|
25 |
+
|
26 |
+
|
27 |
+
class FacePerceiverResampler(torch.nn.Module):
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
*,
|
31 |
+
dim=768,
|
32 |
+
depth=4,
|
33 |
+
dim_head=64,
|
34 |
+
heads=16,
|
35 |
+
embedding_dim=1280,
|
36 |
+
output_dim=768,
|
37 |
+
ff_mult=4,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.proj_in = torch.nn.Linear(embedding_dim, dim)
|
42 |
+
self.proj_out = torch.nn.Linear(dim, output_dim)
|
43 |
+
self.norm_out = torch.nn.LayerNorm(output_dim)
|
44 |
+
self.layers = torch.nn.ModuleList([])
|
45 |
+
for _ in range(depth):
|
46 |
+
self.layers.append(
|
47 |
+
torch.nn.ModuleList(
|
48 |
+
[
|
49 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
50 |
+
FeedForward(dim=dim, mult=ff_mult),
|
51 |
+
]
|
52 |
+
)
|
53 |
+
)
|
54 |
+
|
55 |
+
def forward(self, latents, x):
|
56 |
+
x = self.proj_in(x)
|
57 |
+
for attn, ff in self.layers:
|
58 |
+
latents = attn(x, latents) + latents
|
59 |
+
latents = ff(latents) + latents
|
60 |
+
latents = self.proj_out(latents)
|
61 |
+
return self.norm_out(latents)
|
62 |
+
|
63 |
+
|
64 |
+
class MLPProjModel(torch.nn.Module):
|
65 |
+
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
self.cross_attention_dim = cross_attention_dim
|
69 |
+
self.num_tokens = num_tokens
|
70 |
+
|
71 |
+
self.proj = torch.nn.Sequential(
|
72 |
+
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
|
73 |
+
torch.nn.GELU(),
|
74 |
+
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
|
75 |
+
)
|
76 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
77 |
+
|
78 |
+
def forward(self, id_embeds):
|
79 |
+
x = self.proj(id_embeds)
|
80 |
+
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
|
81 |
+
x = self.norm(x)
|
82 |
+
return x
|
83 |
+
|
84 |
+
|
85 |
+
class ProjPlusModel(torch.nn.Module):
|
86 |
+
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
self.cross_attention_dim = cross_attention_dim
|
90 |
+
self.num_tokens = num_tokens
|
91 |
+
|
92 |
+
self.proj = torch.nn.Sequential(
|
93 |
+
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
|
94 |
+
torch.nn.GELU(),
|
95 |
+
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
|
96 |
+
)
|
97 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
98 |
+
|
99 |
+
self.perceiver_resampler = FacePerceiverResampler(
|
100 |
+
dim=cross_attention_dim,
|
101 |
+
depth=4,
|
102 |
+
dim_head=64,
|
103 |
+
heads=cross_attention_dim // 64,
|
104 |
+
embedding_dim=clip_embeddings_dim,
|
105 |
+
output_dim=cross_attention_dim,
|
106 |
+
ff_mult=4,
|
107 |
+
)
|
108 |
+
|
109 |
+
def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
|
110 |
+
|
111 |
+
x = self.proj(id_embeds)
|
112 |
+
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
|
113 |
+
x = self.norm(x)
|
114 |
+
out = self.perceiver_resampler(x, clip_embeds)
|
115 |
+
if shortcut:
|
116 |
+
out = x + scale * out
|
117 |
+
return out
|
118 |
+
|
119 |
+
|
120 |
+
class IPAdapterFaceID:
|
121 |
+
def __init__(self, sd_pipe, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
|
122 |
+
self.device = device
|
123 |
+
self.ip_ckpt = ip_ckpt
|
124 |
+
self.lora_rank = lora_rank
|
125 |
+
self.num_tokens = num_tokens
|
126 |
+
self.torch_dtype = torch_dtype
|
127 |
+
|
128 |
+
self.pipe = sd_pipe.to(self.device)
|
129 |
+
self.set_ip_adapter()
|
130 |
+
|
131 |
+
# image proj model
|
132 |
+
self.image_proj_model = self.init_proj()
|
133 |
+
|
134 |
+
self.load_ip_adapter()
|
135 |
+
|
136 |
+
def init_proj(self):
|
137 |
+
image_proj_model = MLPProjModel(
|
138 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
139 |
+
id_embeddings_dim=512,
|
140 |
+
num_tokens=self.num_tokens,
|
141 |
+
).to(self.device, dtype=self.torch_dtype)
|
142 |
+
return image_proj_model
|
143 |
+
|
144 |
+
def set_ip_adapter(self):
|
145 |
+
unet = self.pipe.unet
|
146 |
+
attn_procs = {}
|
147 |
+
for name in unet.attn_processors.keys():
|
148 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
149 |
+
if name.startswith("mid_block"):
|
150 |
+
hidden_size = unet.config.block_out_channels[-1]
|
151 |
+
elif name.startswith("up_blocks"):
|
152 |
+
block_id = int(name[len("up_blocks.")])
|
153 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
154 |
+
elif name.startswith("down_blocks"):
|
155 |
+
block_id = int(name[len("down_blocks.")])
|
156 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
157 |
+
if cross_attention_dim is None:
|
158 |
+
attn_procs[name] = LoRAAttnProcessor(
|
159 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
|
160 |
+
).to(self.device, dtype=self.torch_dtype)
|
161 |
+
else:
|
162 |
+
attn_procs[name] = LoRAIPAttnProcessor(
|
163 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
|
164 |
+
).to(self.device, dtype=self.torch_dtype)
|
165 |
+
unet.set_attn_processor(attn_procs)
|
166 |
+
|
167 |
+
def load_ip_adapter(self):
|
168 |
+
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
169 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
170 |
+
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
171 |
+
for key in f.keys():
|
172 |
+
if key.startswith("image_proj."):
|
173 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
174 |
+
elif key.startswith("ip_adapter."):
|
175 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
176 |
+
else:
|
177 |
+
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
178 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
179 |
+
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
180 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
181 |
+
|
182 |
+
@torch.inference_mode()
|
183 |
+
def get_image_embeds(self, faceid_embeds):
|
184 |
+
|
185 |
+
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
|
186 |
+
image_prompt_embeds = self.image_proj_model(faceid_embeds)
|
187 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
|
188 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
189 |
+
|
190 |
+
def set_scale(self, scale):
|
191 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
192 |
+
if isinstance(attn_processor, LoRAIPAttnProcessor):
|
193 |
+
attn_processor.scale = scale
|
194 |
+
|
195 |
+
def generate(
|
196 |
+
self,
|
197 |
+
faceid_embeds=None,
|
198 |
+
prompt=None,
|
199 |
+
negative_prompt=None,
|
200 |
+
scale=1.0,
|
201 |
+
num_samples=4,
|
202 |
+
seed=None,
|
203 |
+
guidance_scale=7.5,
|
204 |
+
num_inference_steps=30,
|
205 |
+
**kwargs,
|
206 |
+
):
|
207 |
+
self.set_scale(scale)
|
208 |
+
|
209 |
+
|
210 |
+
num_prompts = faceid_embeds.size(0)
|
211 |
+
|
212 |
+
if prompt is None:
|
213 |
+
prompt = "best quality, high quality"
|
214 |
+
if negative_prompt is None:
|
215 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
216 |
+
|
217 |
+
if not isinstance(prompt, List):
|
218 |
+
prompt = [prompt] * num_prompts
|
219 |
+
if not isinstance(negative_prompt, List):
|
220 |
+
negative_prompt = [negative_prompt] * num_prompts
|
221 |
+
|
222 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
|
223 |
+
|
224 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
225 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
226 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
227 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
228 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
229 |
+
|
230 |
+
with torch.inference_mode():
|
231 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
232 |
+
prompt,
|
233 |
+
device=self.device,
|
234 |
+
num_images_per_prompt=num_samples,
|
235 |
+
do_classifier_free_guidance=True,
|
236 |
+
negative_prompt=negative_prompt,
|
237 |
+
)
|
238 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
239 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
240 |
+
|
241 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
242 |
+
images = self.pipe(
|
243 |
+
prompt_embeds=prompt_embeds,
|
244 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
245 |
+
guidance_scale=guidance_scale,
|
246 |
+
num_inference_steps=num_inference_steps,
|
247 |
+
generator=generator,
|
248 |
+
**kwargs,
|
249 |
+
).images
|
250 |
+
|
251 |
+
return images
|
252 |
+
|
253 |
+
|
254 |
+
class IPAdapterFaceIDPlus:
|
255 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
|
256 |
+
self.device = device
|
257 |
+
self.image_encoder_path = image_encoder_path
|
258 |
+
self.ip_ckpt = ip_ckpt
|
259 |
+
self.lora_rank = lora_rank
|
260 |
+
self.num_tokens = num_tokens
|
261 |
+
self.torch_dtype = torch_dtype
|
262 |
+
|
263 |
+
self.pipe = sd_pipe.to(self.device)
|
264 |
+
self.set_ip_adapter()
|
265 |
+
|
266 |
+
# load image encoder
|
267 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
268 |
+
self.device, dtype=self.torch_dtype
|
269 |
+
)
|
270 |
+
self.clip_image_processor = CLIPImageProcessor()
|
271 |
+
# image proj model
|
272 |
+
self.image_proj_model = self.init_proj()
|
273 |
+
|
274 |
+
self.load_ip_adapter()
|
275 |
+
|
276 |
+
def init_proj(self):
|
277 |
+
image_proj_model = ProjPlusModel(
|
278 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
279 |
+
id_embeddings_dim=512,
|
280 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
281 |
+
num_tokens=self.num_tokens,
|
282 |
+
).to(self.device, dtype=self.torch_dtype)
|
283 |
+
return image_proj_model
|
284 |
+
|
285 |
+
def set_ip_adapter(self):
|
286 |
+
unet = self.pipe.unet
|
287 |
+
attn_procs = {}
|
288 |
+
for name in unet.attn_processors.keys():
|
289 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
290 |
+
if name.startswith("mid_block"):
|
291 |
+
hidden_size = unet.config.block_out_channels[-1]
|
292 |
+
elif name.startswith("up_blocks"):
|
293 |
+
block_id = int(name[len("up_blocks.")])
|
294 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
295 |
+
elif name.startswith("down_blocks"):
|
296 |
+
block_id = int(name[len("down_blocks.")])
|
297 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
298 |
+
if cross_attention_dim is None:
|
299 |
+
attn_procs[name] = LoRAAttnProcessor(
|
300 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
|
301 |
+
).to(self.device, dtype=self.torch_dtype)
|
302 |
+
else:
|
303 |
+
attn_procs[name] = LoRAIPAttnProcessor(
|
304 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
|
305 |
+
).to(self.device, dtype=self.torch_dtype)
|
306 |
+
unet.set_attn_processor(attn_procs)
|
307 |
+
|
308 |
+
def load_ip_adapter(self):
|
309 |
+
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
310 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
311 |
+
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
312 |
+
for key in f.keys():
|
313 |
+
if key.startswith("image_proj."):
|
314 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
315 |
+
elif key.startswith("ip_adapter."):
|
316 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
317 |
+
else:
|
318 |
+
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
319 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
320 |
+
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
321 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
322 |
+
|
323 |
+
@torch.inference_mode()
|
324 |
+
def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut):
|
325 |
+
if isinstance(face_image, Image.Image):
|
326 |
+
pil_image = [face_image]
|
327 |
+
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
|
328 |
+
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
|
329 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
330 |
+
uncond_clip_image_embeds = self.image_encoder(
|
331 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
332 |
+
).hidden_states[-2]
|
333 |
+
|
334 |
+
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
|
335 |
+
image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
336 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
|
337 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
338 |
+
|
339 |
+
def set_scale(self, scale):
|
340 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
341 |
+
if isinstance(attn_processor, LoRAIPAttnProcessor):
|
342 |
+
attn_processor.scale = scale
|
343 |
+
|
344 |
+
def generate(
|
345 |
+
self,
|
346 |
+
face_image=None,
|
347 |
+
faceid_embeds=None,
|
348 |
+
prompt=None,
|
349 |
+
negative_prompt=None,
|
350 |
+
scale=1.0,
|
351 |
+
num_samples=4,
|
352 |
+
seed=None,
|
353 |
+
guidance_scale=7.5,
|
354 |
+
num_inference_steps=30,
|
355 |
+
s_scale=1.0,
|
356 |
+
shortcut=False,
|
357 |
+
**kwargs,
|
358 |
+
):
|
359 |
+
self.set_scale(scale)
|
360 |
+
|
361 |
+
|
362 |
+
num_prompts = faceid_embeds.size(0)
|
363 |
+
|
364 |
+
if prompt is None:
|
365 |
+
prompt = "best quality, high quality"
|
366 |
+
if negative_prompt is None:
|
367 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
368 |
+
|
369 |
+
if not isinstance(prompt, List):
|
370 |
+
prompt = [prompt] * num_prompts
|
371 |
+
if not isinstance(negative_prompt, List):
|
372 |
+
negative_prompt = [negative_prompt] * num_prompts
|
373 |
+
|
374 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
|
375 |
+
|
376 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
377 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
378 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
379 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
380 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
381 |
+
|
382 |
+
with torch.inference_mode():
|
383 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
384 |
+
prompt,
|
385 |
+
device=self.device,
|
386 |
+
num_images_per_prompt=num_samples,
|
387 |
+
do_classifier_free_guidance=True,
|
388 |
+
negative_prompt=negative_prompt,
|
389 |
+
)
|
390 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
391 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
392 |
+
|
393 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
394 |
+
images = self.pipe(
|
395 |
+
prompt_embeds=prompt_embeds,
|
396 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
397 |
+
guidance_scale=guidance_scale,
|
398 |
+
num_inference_steps=num_inference_steps,
|
399 |
+
generator=generator,
|
400 |
+
**kwargs,
|
401 |
+
).images
|
402 |
+
|
403 |
+
return images
|
404 |
+
|
405 |
+
|
406 |
+
class IPAdapterFaceIDXL(IPAdapterFaceID):
|
407 |
+
"""SDXL"""
|
408 |
+
|
409 |
+
def generate(
|
410 |
+
self,
|
411 |
+
faceid_embeds=None,
|
412 |
+
prompt=None,
|
413 |
+
negative_prompt=None,
|
414 |
+
scale=1.0,
|
415 |
+
num_samples=4,
|
416 |
+
seed=None,
|
417 |
+
num_inference_steps=30,
|
418 |
+
**kwargs,
|
419 |
+
):
|
420 |
+
self.set_scale(scale)
|
421 |
+
|
422 |
+
num_prompts = faceid_embeds.size(0)
|
423 |
+
|
424 |
+
if prompt is None:
|
425 |
+
prompt = "best quality, high quality"
|
426 |
+
if negative_prompt is None:
|
427 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
428 |
+
|
429 |
+
if not isinstance(prompt, List):
|
430 |
+
prompt = [prompt] * num_prompts
|
431 |
+
if not isinstance(negative_prompt, List):
|
432 |
+
negative_prompt = [negative_prompt] * num_prompts
|
433 |
+
|
434 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
|
435 |
+
|
436 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
437 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
438 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
439 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
440 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
441 |
+
|
442 |
+
with torch.inference_mode():
|
443 |
+
(
|
444 |
+
prompt_embeds,
|
445 |
+
negative_prompt_embeds,
|
446 |
+
pooled_prompt_embeds,
|
447 |
+
negative_pooled_prompt_embeds,
|
448 |
+
) = self.pipe.encode_prompt(
|
449 |
+
prompt,
|
450 |
+
num_images_per_prompt=num_samples,
|
451 |
+
do_classifier_free_guidance=True,
|
452 |
+
negative_prompt=negative_prompt,
|
453 |
+
)
|
454 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
455 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
456 |
+
|
457 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
458 |
+
print(generator.device, self.pipe.device, prompt_embeds.device, negative_prompt_embeds.device, pooled_prompt_embeds.device, negative_pooled_prompt_embeds.device)
|
459 |
+
images = self.pipe(
|
460 |
+
prompt_embeds=prompt_embeds,
|
461 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
462 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
463 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
464 |
+
num_inference_steps=num_inference_steps,
|
465 |
+
generator=generator,
|
466 |
+
**kwargs,
|
467 |
+
).images
|
468 |
+
|
469 |
+
return images
|