sd_card / app.py
nsfwalex's picture
Update app.py
10e06cb verified
raw
history blame
13.8 kB
import spaces
import gradio as gr
import os
import random
import json
import time
import uuid
from PIL import Image
from huggingface_hub import snapshot_download
from diffusers import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, AutoPipelineForText2Image, DiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
import torch
from typing import Tuple
from datetime import datetime
import requests
import torch
from diffusers import DiffusionPipeline
import importlib
import re
from urllib.parse import urlparse
random.seed(time.time())
MAX_SEED = 12211231
CACHE_EXAMPLES = "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
NUM_IMAGES_PER_PROMPT = 1
# Define the regular expression
child_related_regex = re.compile(
r'(child|children|kid|kids|baby|babies|toddler|infant|juvenile|minor|underage|preteen|adolescent|youngster|youth|son|daughter|young|kindergarten|preschool|'
r'([1-9]|1[0-7])[\s_\-|\.\,]*year(s)?[\s_\-|\.\,]*old|' # Matches 1 to 17 years old with various separators
r'little|small|tiny|short|young|new[\s_\-|\.\,]*born[\s_\-|\.\,]*(boy|girl|male|man|bro|brother|sis|sister))',
re.IGNORECASE
)
# Function to remove child-related content from a prompt
def remove_child_related_content(prompt):
cleaned_prompt = re.sub(child_related_regex, '', prompt)
return cleaned_prompt.strip()
# Function to check if a prompt contains child-related content
def contains_child_related_content(prompt):
if child_related_regex.search(prompt):
return True
return False
cfg = json.load(open("app.conf"))
def load_pipeline_and_scheduler():
clip_skip = cfg.get("clip_skip", 0)
# Download the model files
ckpt_dir = snapshot_download(repo_id=cfg["model_id"])
# Load the models
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
ckpt_dir,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
pipe = pipe.to("cuda")
pipe.unet.set_attn_processor(AttnProcessor2_0())
# Define samplers
samplers = {
"Euler a": EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config),
"DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
}
# Set the scheduler based on the selected sampler
pipe.scheduler = samplers[cfg.get("sampler","DPM++ SDE Karras")]
# Set clip skip
pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
return pipe
pipe = load_pipeline_and_scheduler()
css = '''
.gradio-container{max-width: 560px !important}
body {
background-color: rgb(3, 7, 18);
color: white;
}
.gradio-container {
background-color: rgb(3, 7, 18) !important;
border: none !important;
}
.gradio-container footer {
display: none !important;
}
'''
js = '''
<script src="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/pv1.js"></script>
<script>
function getEnvInfo() {
const result = {};
// Get URL parameters
const urlParams = new URLSearchParams(window.location.search);
for (const [key, value] of urlParams) {
result[key] = value;
}
// Get current domain and convert to lowercase
result["__domain"] = window.location.hostname.toLowerCase();
// Get iframe parent domain, if any, and convert to lowercase
try {
if (window.self !== window.top) {
result["__iframe_domain"] = document.referrer
? new URL(document.referrer).hostname.toLowerCase()
: "unable to get iframe parent domain";
}else{
result["__iframe_domain"] = "";
}
} catch (e) {
result["__iframe_domain"] = "unable to access iframe parent domain";
}
return result;
}
function isValidEnv(){
envInfo = getEnvInfo();
return envInfo["e"] == "1" ||
envInfo["__domain"].indexOf("nsfwais.io") != -1 ||
envInfo["__iframe_domain"].indexOf("nsfwais.io") != -1 ||
envInfo["__domain"].indexOf("127.0.0.1") != -1 ||
envInfo["__iframe_domain"].indexOf("127.0.0.1") != -1;
}
window.g=function(p){
params = getEnvInfo();
if (!isValidEnv()){
return "";
}
const conditions = {
"tag": ["normal", "sexy"],
"exclude_category": ["Clothing"],
"count_per_tag": 1
};
prompt = generateSexyPrompt(conditions["tags"])
console.log(prompt);
return prompt
}
window.postMessageToParent = function(prompt, event, source, value) {
// Construct the message object with the provided parameters
console.log("post start",event, source, value);
const message = {
event: event,
source: source,
value: value
};
if (!prompt){
prompt = window.g();
// Find the prompt input element
const promptContainer = document.getElementById('prompt_input_box');
if (promptContainer) {
const promptInput = promptContainer.querySelector('input') || promptContainer.querySelector('textarea');
if (promptInput) {
promptInput.value = prompt;
// Trigger an input event to ensure Gradio recognizes the change
promptInput.dispatchEvent(new Event('input', { bubbles: true }));
}
}
}
if (window.self !== window.top) {
// Post the message to the parent window
window.parent.postMessage(message, '*');
}else if(isValidEnv()){
try{
sendCustomEventToDataLayer({},event,source,value)
} catch (error) {
console.error("Error in sendCustomEventToDataLayer:", error);
}
}else{
console.log("Not in an iframe, can't post to parent");
}
console.log("post finish");
return prompt;
}
function uploadImage(prompt, images, event, source, value) {
// Ensure we're in an iframe
console.log("uploadImage", prompt, images && images.length > 0 ? images[0].image.url : null, event, source, value);
// Get the first image from the gallery (assuming it's an array)
let imageUrl = images && images.length > 0 ? images[0].image.url : null;
if (window.self !== window.top) {
// Post the message to the parent window
// Prepare the data to send
let data = {
event: event,
source: source,
value:{
prompt: prompt,
image: imageUrl
}
};
window.parent.postMessage(JSON.stringify(data), '*');
} else if (isValidEnv()){
try{
sendCustomEventToDataLayer({},event,source,{"prompt": prompt, "image":imageUrl, "model": value})
} catch (error) {
console.error("Error in sendCustomEventToDataLayer:", error);
}
}else{
console.log("Not in an iframe, can't post to parent");
}
return prompt, images
}
function onDemoLoad(){
let envInfo = getEnvInfo();
console.log(envInfo);
if (isValidEnv()){
var element = document.getElementById("desc_html_code");
if (element) {
element.parentNode.removeChild(element);
}
}
return;
//return envInfo["__domain"], envInfo["__iframe_domain"]
}
</script>
'''
desc_html='''
<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px; text-align: center; margin-top: 20px;">
<p style="font-size: 16px; color: #333;">
For the full version and more exciting NSFW AI apps, visit
<a href="https://nsfwais.io?utm_source=hf_'''+cfg["model_id"].replace("/","_")+'''&utm_medium=referral" style="color: #0066cc; text-decoration: none; font-weight: bold;" rel="dofollow">nsfwais.io</a>!
</p>
</div>
'''
def save_image(img):
# Generate a unique filename
unique_name = str(uuid.uuid4()) + ".webp"
# Convert the image to WebP format
webp_img = img.convert("RGB") # Ensure the image is in RGB mode
# Save the image in WebP format with high quality
webp_img.save(unique_name, "WEBP", quality=90)
# Open the saved WebP file and return it as a PIL Image object
with Image.open(unique_name) as webp_file:
webp_image = webp_file.copy()
return webp_image, unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60)
def generate(p, progress=gr.Progress(track_tqdm=True)):
negative_prompt = cfg.get("negative_prompt", "")
style_selection = ""
use_negative_prompt = True
seed = 0
width = cfg.get("width", 1024)
height = cfg.get("width", 768)
inference_steps = cfg.get("inference_steps", 30)
randomize_seed = True
guidance_scale = cfg.get("guidance_scale", 7.5)
p = remove_child_related_content(p)
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(pipe.device).manual_seed(seed)
images = pipe(
prompt=prompt_str,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=inference_steps,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
output_type="pil",
).images
images = [save_image(img) for img in images]
image_paths = [i[1] for i in images]
print(prompt_str, image_paths)
return [i[0] for i in images]
default_image = cfg.get("cover_path", None)
if default_image:
if isinstance(default_image, list):
# Filter out non-existent paths
existing_images = [img for img in default_image if os.path.exists(img)]
#print(f"found cover files: {existing_images}")
if existing_images:
default_image = existing_images[int(time.time()*1000)%len(existing_images)]
else:
default_image = None
elif not os.path.exists(default_image):
print(f"cover file not existed, {default_image}")
default_image = None
else:
default_image = None
with gr.Blocks(css=css,head=js,fill_height=True) as demo:
with gr.Row(equal_height=False):
with gr.Group():
gr.HTML(value=desc_html, elem_id='desc_html_code')
result = gr.Gallery(value=[default_image],
label="Result", show_label=False, columns=1, rows=1, show_share_button=True,elem_id=cfg["model_id"].replace("/", "-"),
show_download_button=True,allow_preview=False,interactive=False, min_width=cfg.get("window_min_width", 340),height=360
)
with gr.Row():
prompt = gr.Text(
show_label=False,
max_lines=2,
lines=2,
placeholder="Enter your fantasy or click ->",
container=False,
scale=5,
min_width=100,
elem_id="prompt_input_box"
)
random_button = gr.Button("Surprise Me", scale=1, min_width=10)
run_button = gr.Button( "GO!", scale=1, min_width=20, variant="primary",icon="https://huggingface.co/spaces/nsfwalex/sd_card/resolve/main/hot.svg")
def on_demo_load(request: gr.Request):
current_domain = request.request.headers.get("Host", "")
# Get the potential iframe parent domain from the Referer header
referer = request.request.headers.get("Referer", "")
iframe_parent_domain = ""
if referer:
try:
parsed_referer = urlparse(referer)
iframe_parent_domain = parsed_referer.netloc
except:
iframe_parent_domain = "Unable to parse referer"
params = dict(request.query_params)
print(f"load_demo, urlparams={params},cover={default_image},domain={current_domain},iframe={iframe_parent_domain}")
session_data = {
"params": params,
"client_ip": request.client.host,
"refer": referer,
"host": current_domain
}
if params.get("e", "0") == "1" or "nsfwais.io" in current_domain or "nsfwais.io" in iframe_parent_domain or "127.0.0.1" in current_domain or "127.0.0.1" in iframe_parent_domain:
#update the image
#bind events
#return [Image.open(default_image)], session_data
return session_data
return session_data
#return [], session_data
session_state = gr.State()
result.change(fn=lambda x,y:None , inputs=[prompt,result], outputs=[], js=f'''(p,img)=>window.uploadImage(p, img,"process_finished","demo_hf_{cfg.get("name")}_card", "{cfg["model_id"]}")''')
run_button.click(generate, inputs=[prompt], outputs=[result],trigger_mode="once",js=f'''(p)=>window.postMessageToParent(p,"process_started","demo_hf_{cfg.get("name")}_card", "click_go")''')
random_button.click(fn=lambda x:x, inputs=[prompt], outputs=[prompt], js='''(p)=>window.g(p)''')
demo.load(fn=on_demo_load, inputs=[], outputs=[session_state], js='''()=>onDemoLoad()''')
if __name__ == "__main__":
demo.queue(max_size=100).launch(show_api=False,show_error=False)