Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda") | |
def generate(prompt, negative_prompt, width, height, sample_steps): | |
return pipeline(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=sample_steps).images[0] | |
with gr.Blocks() as interface: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="A perfectly red apple, 32k HDR, studio lighting", lines=4, interactive=True) | |
negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True) | |
with gr.Column(): | |
generate_button = gr.Button("Generate") | |
output = gr.Image() | |
with gr.Row(): | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True) | |
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True) | |
with gr.Column(): | |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True) | |
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output]) | |
if __name__ == "__main__": | |
interface.launch() |