StyleShot / ip_adapter /style_encoder.py
nowsyn's picture
upload code
107040a
raw
history blame contribute delete
No virus
9.68 kB
import torch
import torch.nn as nn
import numpy as np
from collections import OrderedDict
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def get_parameter_dtype(parameter: torch.nn.Module):
try:
params = tuple(parameter.parameters())
if len(params) > 0:
return params[0].dtype
buffers = tuple(parameter.buffers())
if len(buffers) > 0:
return buffers[0].dtype
except StopIteration:
# For torch.nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResnetBlock(nn.Module):
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
super().__init__()
ps = ksize // 2
if in_c != out_c or sk == False:
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.in_conv = None
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
if sk == False:
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.skep = None
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=use_conv)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
if self.in_conv is not None: # edit
x = self.in_conv(x)
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
if self.skep is not None:
return h + self.skep(x)
else:
return h + x
class Low_CNN(nn.Module):
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True):
super(Low_CNN, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv))
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.adapter = nn.Linear(1280, 1280)
@property
def dtype(self) -> torch.dtype:
"""
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
return get_parameter_dtype(self)
def forward(self, x):
x = self.unshuffle(x)
x = self.conv_in(x)
x = self.body(x)
x = self.pool(x)
x = x.flatten(start_dim=1, end_dim=-1)
x = self.adapter(x)
return x
class Middle_CNN(nn.Module):
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True):
super(Middle_CNN, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv))
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.adapter = nn.Linear(1280, 1280)
@property
def dtype(self) -> torch.dtype:
"""
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
return get_parameter_dtype(self)
def forward(self, x):
x = self.unshuffle(x)
x = self.conv_in(x)
x = self.body(x)
x = self.pool(x)
x = x.flatten(start_dim=1, end_dim=-1)
x = self.adapter(x)
return x
class High_CNN(nn.Module):
def __init__(self, cin=192, ksize=1, sk=False, use_conv=True):
super(High_CNN, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.body = nn.Sequential(ResnetBlock(320, 320, down=False, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(320, 640, down=False, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(640, 640, down=True, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(640, 1280, down=True, ksize=ksize, sk=sk, use_conv=use_conv),
ResnetBlock(1280, 1280, down=False, ksize=ksize, sk=sk, use_conv=use_conv))
self.conv_in = nn.Conv2d(cin, 320, 3, 1, 1)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.adapter = nn.Linear(1280, 1280)
@property
def dtype(self) -> torch.dtype:
"""
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
return get_parameter_dtype(self)
def forward(self, x):
x = self.unshuffle(x)
x = self.conv_in(x)
x = self.body(x)
x = self.pool(x)
x = x.flatten(start_dim=1, end_dim=-1)
x = self.adapter(x)
return x
class Style_Aware_Encoder(torch.nn.Module):
def __init__(self, image_encoder):
super().__init__()
self.image_encoder = image_encoder
self.projection_dim = self.image_encoder.config.projection_dim
self.num_positions = 59
self.embed_dim = 1280
self.cnn = nn.ModuleList(
[High_CNN(sk=True, use_conv=False),
Middle_CNN(sk=True, use_conv=False),
Low_CNN(sk=True, use_conv=False)]
)
self.style_embeddings = nn.ParameterList(
[nn.Parameter(torch.randn(self.embed_dim)),
nn.Parameter(torch.randn(self.embed_dim)),
nn.Parameter(torch.randn(self.embed_dim))]
)
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, inputs, batch_size=1):
embeddings = []
for idx, x in enumerate(inputs):
class_embed = self.style_embeddings[idx].expand(batch_size, 1, -1)
patch_embed = self.cnn[idx](x)
patch_embed = patch_embed.view(batch_size, -1, patch_embed.shape[1])
embedding = torch.cat([class_embed, patch_embed], dim=1)
embeddings.append(embedding)
embeddings = torch.cat(embeddings, dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids) # [B, 256, 1280] - [B, P, 1280]
embeddings = self.image_encoder.vision_model.pre_layrnorm(embeddings)
encoder_outputs = self.image_encoder.vision_model.encoder(
inputs_embeds=embeddings,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, [0, 9, 26], :]
pooled_output = self.image_encoder.vision_model.post_layernorm(pooled_output)
out = self.image_encoder.visual_projection(pooled_output)
return out