AnyControl / models /local_adapter.py
nowsyn's picture
upload codes
54a7220
raw
history blame
No virus
18.3 kB
import torch
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.diffusionmodules.util import (
checkpoint,
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from ldm.modules.diffusionmodules.openaimodel import (
UNetModel,
TimestepBlock,
TimestepEmbedSequential,
ResBlock,
Downsample,
AttentionBlock
)
from ldm.modules.attention import SpatialTransformer
from ldm.util import exists
def layer_norm(tensor, drop=0.5, eps=1e-6):
mean = tensor.mean(dim=(1,2)).squeeze()
std = tensor.std(dim=(1,2)).squeeze()
var = tensor.var(dim=(1,2))
tensor = (tensor-mean) / (var+eps) ** 0.5
neg = (tensor * (tensor < 0).float()).abs().sum() / (tensor<0).float().sum()
pos = (tensor * (tensor > 0).float()).abs().sum() / (tensor>0).float().sum()
class LocalTimestepEmbedSequential(nn.Sequential, TimestepBlock):
def forward(self, x, emb, context=None, local_control=None, content_control=None, color_control=None, content_w=1.0, color_w=1.0):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context, content_control, color_control, content_w, color_w)
elif isinstance(layer, LocalResBlock):
x = layer(x, emb, local_control)
else:
x = layer(x)
return x
class FDN(nn.Module):
def __init__(self, norm_nc, label_nc):
super().__init__()
ks = 3
pw = ks // 2
self.param_free_norm = nn.GroupNorm(32, norm_nc, affine=False)
self.conv_gamma = nn.Conv2d(label_nc, norm_nc, kernel_size=ks, padding=pw)
self.conv_beta = nn.Conv2d(label_nc, norm_nc, kernel_size=ks, padding=pw)
def forward(self, x, local_features):
normalized = self.param_free_norm(x)
assert local_features.size()[2:] == x.size()[2:]
gamma = self.conv_gamma(local_features)
beta = self.conv_beta(local_features)
out = normalized * (1 + gamma) + beta
return out
class LocalResBlock(nn.Module):
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
dims=2,
use_checkpoint=False,
inject_channels=None,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_checkpoint = use_checkpoint
self.norm_in = FDN(channels, inject_channels)
self.norm_out = FDN(self.out_channels, inject_channels)
self.in_layers = nn.Sequential(
nn.Identity(),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
self.out_channels,
),
)
self.out_layers = nn.Sequential(
nn.Identity(),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb, local_conditions):
return checkpoint(
self._forward, (x, emb, local_conditions), self.parameters(), self.use_checkpoint
)
def _forward(self, x, emb, local_conditions):
local_conditions = F.interpolate(local_conditions, x.shape[-2:], mode="bilinear")
h = self.norm_in(x, local_conditions)
h = self.in_layers(h)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
h = h + emb_out
h = self.norm_out(h, local_conditions)
h = self.out_layers(h)
return self.skip_connection(x) + h
class LocalAdapter(nn.Module):
def __init__(
self,
in_channels,
model_channels,
local_channels,
inject_channels,
inject_layers,
query_channels,
query_layers,
query_scales,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.in_channels = in_channels
self.model_channels = model_channels
self.inject_layers = inject_layers
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
self.query_channels = query_channels
self.query_layers = query_layers
self.query_scales = query_scales
visual_projs = []
for query_channel, inject_channel in zip(query_channels, inject_channels):
layer_proj = zero_module(linear(query_channel, inject_channel))
visual_projs.append(layer_proj)
self.visual_projs = nn.ModuleList(visual_projs)
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
LocalTimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
if (1 + 3*level + nr) in self.inject_layers:
layers = [
LocalResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
inject_channels=inject_channels[level],
)
]
else:
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(LocalTimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
LocalTimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = LocalTimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return LocalTimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def extract_local_features(self, q_former, text, local_conditions):
# extract local features
bs, chn, h, w = local_conditions.shape
n = chn // 3
image_features_frozen, image_atts = q_former.forward_visual_encoder(local_conditions.view(bs * n, 3, h, w))
bs_n, seq_len, v_chn = image_features_frozen[0].shape
# with pos embed
image_features_frozen = [q_former.crossattn_embeddings(image_feat) for image_feat in image_features_frozen]
# image_features_frozen: [bs * n, seq_len, c]
image_features_frozen = [image_feat.view(bs, n*seq_len, v_chn) for image_feat in image_features_frozen]
image_atts = [image_att.view(bs, -1) for image_att in image_atts]
local_embeddings = q_former.forward_qformer(text, image_features_frozen, image_atts)
# process qformer features
local_features = []
for lvl, scale_factor, visual_proj in zip(self.query_layers, self.query_scales, self.visual_projs):
local_emb = local_embeddings[lvl]
_, seq_len, ndim = local_emb.shape
l = int(seq_len ** 0.5)
local_emb = F.interpolate(local_emb.transpose(1,2).view(bs, -1, l, l), None, scale_factor=scale_factor, mode="bilinear")
local_emb = visual_proj(local_emb.transpose(1,2).transpose(2,3).flatten(1,2))
local_emb = local_emb.view(bs, int(l*scale_factor), int(l*scale_factor), -1).transpose(2,3).transpose(1,2)
local_features.append(local_emb)
return local_features
def forward(self, x, timesteps, context, local_features, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
outs = []
h = x.type(self.dtype)
for layer_idx, (module, zero_conv) in enumerate(zip(self.input_blocks, self.zero_convs)):
if layer_idx in self.inject_layers:
h = module(h, emb, context, local_control=local_features[self.inject_layers.index(layer_idx)])
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
class LocalControlUNetModel(UNetModel):
def forward(self, x, timesteps=None, context=None, local_control=None, content_control=None, color_control=None, local_w=1.0, content_w=1.0, color_w=1.0, **kwargs):
hs = []
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context, content_control=content_control, color_control=color_control, content_w=content_w, color_w=color_w)
hs.append(h)
h = self.middle_block(h, emb, context, content_control=content_control, color_control=color_control, content_w=content_w, color_w=color_w)
h += local_w * local_control.pop()
for module in self.output_blocks:
h = torch.cat([h, hs.pop() + local_w * local_control.pop()], dim=1)
h = module(h, emb, context, content_control=content_control, color_control=color_control, content_w=content_w, color_w=color_w)
h = h.type(x.dtype)
return self.out(h)