Spaces:
Sleeping
Sleeping
tanthinhdt
commited on
fix(app): adjust some params
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import yaml
|
2 |
import gradio as gr
|
3 |
from mediapipe.python.solutions import holistic
|
4 |
from torchvision.transforms.v2 import Compose, Lambda, Normalize
|
@@ -62,17 +61,38 @@ examples = [
|
|
62 |
]
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def inference(
|
66 |
video: str,
|
67 |
k: int,
|
68 |
-
model,
|
69 |
-
keypoints_detector,
|
70 |
-
data_height: int,
|
71 |
-
data_width: int,
|
72 |
-
model_input_height: int,
|
73 |
-
model_input_width: int,
|
74 |
-
device: str,
|
75 |
-
transform: Compose,
|
76 |
progress: gr.Progress = gr.Progress(),
|
77 |
) -> tuple:
|
78 |
progress(0, desc='Preprocessing video')
|
@@ -80,8 +100,6 @@ def inference(
|
|
80 |
model_num_frames=model.config.num_frames,
|
81 |
keypoints_detector=keypoints_detector,
|
82 |
source=video,
|
83 |
-
data_height=data_height,
|
84 |
-
data_width=data_width,
|
85 |
model_input_height=model_input_height,
|
86 |
model_input_width=model_input_width,
|
87 |
device=device,
|
@@ -100,61 +118,22 @@ def inference(
|
|
100 |
return output_message
|
101 |
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
model_complexity=2,
|
123 |
-
enable_segmentation=True,
|
124 |
-
refine_face_landmarks=True,
|
125 |
-
)
|
126 |
-
|
127 |
-
transform = Compose(
|
128 |
-
[
|
129 |
-
Lambda(lambda x: x / 255.0),
|
130 |
-
Normalize(mean=mean, std=std),
|
131 |
-
]
|
132 |
-
)
|
133 |
-
|
134 |
-
iface = gr.Interface(
|
135 |
-
fn=inference,
|
136 |
-
inputs=[
|
137 |
-
'video',
|
138 |
-
gr.components.Slider(
|
139 |
-
minimum=1,
|
140 |
-
maximum=5,
|
141 |
-
value=3,
|
142 |
-
step=1,
|
143 |
-
label='k',
|
144 |
-
info='Return top-k results',
|
145 |
-
),
|
146 |
-
model,
|
147 |
-
keypoints_detector,
|
148 |
-
config['data']['height'],
|
149 |
-
config['data']['width'],
|
150 |
-
height,
|
151 |
-
width,
|
152 |
-
device,
|
153 |
-
transform,
|
154 |
-
],
|
155 |
-
outputs='text',
|
156 |
-
examples=examples,
|
157 |
-
title=title,
|
158 |
-
description=description,
|
159 |
-
)
|
160 |
-
iface.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from mediapipe.python.solutions import holistic
|
3 |
from torchvision.transforms.v2 import Compose, Lambda, Normalize
|
|
|
61 |
]
|
62 |
|
63 |
|
64 |
+
device = 'cpu'
|
65 |
+
model_name = 'VieSignLang/videomae_skeleton_v1.0'
|
66 |
+
image_processor = VideoMAEImageProcessor.from_pretrained(model_name)
|
67 |
+
model = VideoMAEForVideoClassification.from_pretrained(model_name)
|
68 |
+
model = model.eval().to(device)
|
69 |
+
|
70 |
+
mean = image_processor.image_mean
|
71 |
+
std = image_processor.image_std
|
72 |
+
if 'shortest_edge' in image_processor.size:
|
73 |
+
model_input_height = model_input_width = image_processor.size['shortest_edge']
|
74 |
+
else:
|
75 |
+
model_input_height = image_processor.size['height']
|
76 |
+
model_input_width = image_processor.size['width']
|
77 |
+
|
78 |
+
keypoints_detector = holistic.Holistic(
|
79 |
+
static_image_mode=False,
|
80 |
+
model_complexity=2,
|
81 |
+
enable_segmentation=True,
|
82 |
+
refine_face_landmarks=True,
|
83 |
+
)
|
84 |
+
|
85 |
+
transform = Compose(
|
86 |
+
[
|
87 |
+
Lambda(lambda x: x / 255.0),
|
88 |
+
Normalize(mean=mean, std=std),
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
def inference(
|
94 |
video: str,
|
95 |
k: int,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
progress: gr.Progress = gr.Progress(),
|
97 |
) -> tuple:
|
98 |
progress(0, desc='Preprocessing video')
|
|
|
100 |
model_num_frames=model.config.num_frames,
|
101 |
keypoints_detector=keypoints_detector,
|
102 |
source=video,
|
|
|
|
|
103 |
model_input_height=model_input_height,
|
104 |
model_input_width=model_input_width,
|
105 |
device=device,
|
|
|
118 |
return output_message
|
119 |
|
120 |
|
121 |
+
iface = gr.Interface(
|
122 |
+
fn=inference,
|
123 |
+
inputs=[
|
124 |
+
'video',
|
125 |
+
gr.components.Slider(
|
126 |
+
minimum=1,
|
127 |
+
maximum=5,
|
128 |
+
value=3,
|
129 |
+
step=1,
|
130 |
+
label='k',
|
131 |
+
info='Return top-k results',
|
132 |
+
),
|
133 |
+
],
|
134 |
+
outputs='text',
|
135 |
+
examples=examples,
|
136 |
+
title=title,
|
137 |
+
description=description,
|
138 |
+
)
|
139 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|