not-lain commited on
Commit
54dbb32
1 Parent(s): a0e320b
Files changed (2) hide show
  1. app.py +0 -9
  2. background_removal.py +0 -29
app.py CHANGED
@@ -11,8 +11,6 @@ from base_utils import (
11
  parse_url,
12
  )
13
 
14
- # from background_removal import remove_bg
15
-
16
  pdf_to_img = gr.Interface(
17
  convert_pdf_to_image, gr.File(), gr.Gallery(), api_name="pdf_to_img"
18
  )
@@ -69,12 +67,6 @@ url_parser = gr.Interface(
69
  api_name="url_to_text",
70
  )
71
 
72
- # rmbg = gr.Interface(
73
- # remove_bg,
74
- # inputs=["image"],
75
- # outputs=["image"],
76
- # api_name="rmbg",
77
- # )
78
 
79
  demo = gr.TabbedInterface(
80
  [
@@ -97,7 +89,6 @@ demo = gr.TabbedInterface(
97
  "Extract PPTX Text",
98
  "Extract text from URL",
99
  "Extract Json",
100
- # "Remove Background",
101
  ],
102
  )
103
 
 
11
  parse_url,
12
  )
13
 
 
 
14
  pdf_to_img = gr.Interface(
15
  convert_pdf_to_image, gr.File(), gr.Gallery(), api_name="pdf_to_img"
16
  )
 
67
  api_name="url_to_text",
68
  )
69
 
 
 
 
 
 
 
70
 
71
  demo = gr.TabbedInterface(
72
  [
 
89
  "Extract PPTX Text",
90
  "Extract text from URL",
91
  "Extract Json",
 
92
  ],
93
  )
94
 
background_removal.py DELETED
@@ -1,29 +0,0 @@
1
- import spaces
2
- from loadimg import load_img
3
- import torch
4
- from torchvision import transforms
5
- # Load BiRefNet with weights
6
- from transformers import AutoModelForImageSegmentation
7
- birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
8
-
9
- @spaces.GPU
10
- def remove_bg(imagepath):
11
- # Data settings
12
- image_size = (1024, 1024)
13
- transform_image = transforms.Compose([
14
- transforms.Resize(image_size),
15
- transforms.ToTensor(),
16
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
17
- ])
18
-
19
- image = load_img(imagepath).convert("RGB")
20
- input_images = transform_image(image).unsqueeze(0).to('cuda')
21
-
22
- # Prediction
23
- with torch.no_grad():
24
- preds = birefnet(input_images)[-1].sigmoid().cpu()
25
- pred = preds[0].squeeze()
26
- pred_pil = transforms.ToPILImage()(pred)
27
- mask = pred_pil.resize(image.size)
28
- image.putalpha(mask)
29
- return image