Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from loadimg import load_img | |
# import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
birefnet.to(device) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
# @spaces.GPU | |
def fn(image): | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
image_size = im.size | |
origin = im.copy() | |
image = load_img(im) | |
input_images = transform_image(image).unsqueeze(0).to(device) | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
# return (image, origin) | |
image.save("img.png","PNG") | |
return (image , "img.png") | |
img1 = gr.Image(type= "pil", image_mode="RGBA") | |
image = gr.Image(label="Upload an image") | |
file = gr.File() | |
chameleon = load_img("chameleon.jpg", output_type="pil") | |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" | |
demo = gr.Interface( | |
fn, inputs=image, outputs=[img1,file], examples=[chameleon], api_name="image" | |
) | |
# tab2 = gr.Interface(fn, inputs=text, outputs=slider2, examples=[url], api_name="text") | |
# demo = gr.TabbedInterface( | |
# [tab1, tab2], ["image", "text"], title="birefnet for background removal (WIP 🛠️, works for linux)" | |
# ) | |
if __name__ == "__main__": | |
demo.launch() | |