|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from .glm import ortho
|
|
|
|
|
|
class Camera:
|
|
def __init__(self, width=1600, height=1200):
|
|
|
|
|
|
focal = np.sqrt(width * width + height * height)
|
|
self.focal_x = focal
|
|
self.focal_y = focal
|
|
|
|
self.principal_x = width / 2
|
|
self.principal_y = height / 2
|
|
|
|
self.skew = 0
|
|
|
|
self.width = width
|
|
self.height = height
|
|
|
|
self.near = 1
|
|
self.far = 10
|
|
|
|
|
|
self.center = np.array([0, 0, 1.6])
|
|
self.direction = np.array([0, 0, -1])
|
|
self.right = np.array([1, 0, 0])
|
|
self.up = np.array([0, 1, 0])
|
|
|
|
self.ortho_ratio = None
|
|
|
|
def sanity_check(self):
|
|
self.center = self.center.reshape([-1])
|
|
self.direction = self.direction.reshape([-1])
|
|
self.right = self.right.reshape([-1])
|
|
self.up = self.up.reshape([-1])
|
|
|
|
assert len(self.center) == 3
|
|
assert len(self.direction) == 3
|
|
assert len(self.right) == 3
|
|
assert len(self.up) == 3
|
|
|
|
@staticmethod
|
|
def normalize_vector(v):
|
|
v_norm = np.linalg.norm(v)
|
|
return v if v_norm == 0 else v / v_norm
|
|
|
|
def get_real_z_value(self, z):
|
|
z_near = self.near
|
|
z_far = self.far
|
|
z_n = 2.0 * z - 1.0
|
|
z_e = 2.0 * z_near * z_far / (z_far + z_near - z_n * (z_far - z_near))
|
|
return z_e
|
|
|
|
def get_rotation_matrix(self):
|
|
rot_mat = np.eye(3)
|
|
s = self.right
|
|
s = self.normalize_vector(s)
|
|
rot_mat[0, :] = s
|
|
u = self.up
|
|
u = self.normalize_vector(u)
|
|
rot_mat[1, :] = -u
|
|
rot_mat[2, :] = self.normalize_vector(self.direction)
|
|
|
|
return rot_mat
|
|
|
|
def get_translation_vector(self):
|
|
rot_mat = self.get_rotation_matrix()
|
|
trans = -np.dot(rot_mat, self.center)
|
|
return trans
|
|
|
|
def get_intrinsic_matrix(self):
|
|
int_mat = np.eye(3)
|
|
|
|
int_mat[0, 0] = self.focal_x
|
|
int_mat[1, 1] = self.focal_y
|
|
int_mat[0, 1] = self.skew
|
|
int_mat[0, 2] = self.principal_x
|
|
int_mat[1, 2] = self.principal_y
|
|
|
|
return int_mat
|
|
|
|
def get_projection_matrix(self):
|
|
ext_mat = self.get_extrinsic_matrix()
|
|
int_mat = self.get_intrinsic_matrix()
|
|
|
|
return np.matmul(int_mat, ext_mat)
|
|
|
|
def get_extrinsic_matrix(self):
|
|
rot_mat = self.get_rotation_matrix()
|
|
int_mat = self.get_intrinsic_matrix()
|
|
trans = self.get_translation_vector()
|
|
|
|
extrinsic = np.eye(4)
|
|
extrinsic[:3, :3] = rot_mat
|
|
extrinsic[:3, 3] = trans
|
|
|
|
return extrinsic[:3, :]
|
|
|
|
def set_rotation_matrix(self, rot_mat):
|
|
self.direction = rot_mat[2, :]
|
|
self.up = -rot_mat[1, :]
|
|
self.right = rot_mat[0, :]
|
|
|
|
def set_intrinsic_matrix(self, int_mat):
|
|
self.focal_x = int_mat[0, 0]
|
|
self.focal_y = int_mat[1, 1]
|
|
self.skew = int_mat[0, 1]
|
|
self.principal_x = int_mat[0, 2]
|
|
self.principal_y = int_mat[1, 2]
|
|
|
|
def set_projection_matrix(self, proj_mat):
|
|
res = cv2.decomposeProjectionMatrix(proj_mat)
|
|
int_mat, rot_mat, camera_center_homo = res[0], res[1], res[2]
|
|
camera_center = camera_center_homo[0:3] / camera_center_homo[3]
|
|
camera_center = camera_center.reshape(-1)
|
|
int_mat = int_mat / int_mat[2][2]
|
|
|
|
self.set_intrinsic_matrix(int_mat)
|
|
self.set_rotation_matrix(rot_mat)
|
|
self.center = camera_center
|
|
|
|
self.sanity_check()
|
|
|
|
def get_gl_matrix(self):
|
|
z_near = self.near
|
|
z_far = self.far
|
|
rot_mat = self.get_rotation_matrix()
|
|
int_mat = self.get_intrinsic_matrix()
|
|
trans = self.get_translation_vector()
|
|
|
|
extrinsic = np.eye(4)
|
|
extrinsic[:3, :3] = rot_mat
|
|
extrinsic[:3, 3] = trans
|
|
axis_adj = np.eye(4)
|
|
axis_adj[2, 2] = -1
|
|
axis_adj[1, 1] = -1
|
|
model_view = np.matmul(axis_adj, extrinsic)
|
|
|
|
projective = np.zeros([4, 4])
|
|
projective[:2, :2] = int_mat[:2, :2]
|
|
projective[:2, 2:3] = -int_mat[:2, 2:3]
|
|
projective[3, 2] = -1
|
|
projective[2, 2] = (z_near + z_far)
|
|
projective[2, 3] = (z_near * z_far)
|
|
|
|
if self.ortho_ratio is None:
|
|
ndc = ortho(0, self.width, 0, self.height, z_near, z_far)
|
|
perspective = np.matmul(ndc, projective)
|
|
else:
|
|
perspective = ortho(-self.width * self.ortho_ratio / 2,
|
|
self.width * self.ortho_ratio / 2,
|
|
-self.height * self.ortho_ratio / 2,
|
|
self.height * self.ortho_ratio / 2, z_near,
|
|
z_far)
|
|
|
|
return perspective, model_view
|
|
|
|
|
|
def KRT_from_P(proj_mat, normalize_K=True):
|
|
res = cv2.decomposeProjectionMatrix(proj_mat)
|
|
K, Rot, camera_center_homog = res[0], res[1], res[2]
|
|
camera_center = camera_center_homog[0:3] / camera_center_homog[3]
|
|
trans = -Rot.dot(camera_center)
|
|
if normalize_K:
|
|
K = K / K[2][2]
|
|
return K, Rot, trans
|
|
|
|
|
|
def MVP_from_P(proj_mat, width, height, near=0.1, far=10000):
|
|
'''
|
|
Convert OpenCV camera calibration matrix to OpenGL projection and model view matrix
|
|
:param proj_mat: OpenCV camera projeciton matrix
|
|
:param width: Image width
|
|
:param height: Image height
|
|
:param near: Z near value
|
|
:param far: Z far value
|
|
:return: OpenGL projection matrix and model view matrix
|
|
'''
|
|
res = cv2.decomposeProjectionMatrix(proj_mat)
|
|
K, Rot, camera_center_homog = res[0], res[1], res[2]
|
|
camera_center = camera_center_homog[0:3] / camera_center_homog[3]
|
|
trans = -Rot.dot(camera_center)
|
|
K = K / K[2][2]
|
|
|
|
extrinsic = np.eye(4)
|
|
extrinsic[:3, :3] = Rot
|
|
extrinsic[:3, 3:4] = trans
|
|
axis_adj = np.eye(4)
|
|
axis_adj[2, 2] = -1
|
|
axis_adj[1, 1] = -1
|
|
model_view = np.matmul(axis_adj, extrinsic)
|
|
|
|
zFar = far
|
|
zNear = near
|
|
projective = np.zeros([4, 4])
|
|
projective[:2, :2] = K[:2, :2]
|
|
projective[:2, 2:3] = -K[:2, 2:3]
|
|
projective[3, 2] = -1
|
|
projective[2, 2] = (zNear + zFar)
|
|
projective[2, 3] = (zNear * zFar)
|
|
|
|
ndc = ortho(0, width, 0, height, zNear, zFar)
|
|
|
|
perspective = np.matmul(ndc, projective)
|
|
|
|
return perspective, model_view
|
|
|