|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
import pytorch_lightning as pl |
|
|
|
|
|
class BaseNetwork(pl.LightningModule): |
|
def __init__(self): |
|
super(BaseNetwork, self).__init__() |
|
|
|
def init_weights(self, init_type='xavier', gain=0.02): |
|
''' |
|
initializes network's weights |
|
init_type: normal | xavier | kaiming | orthogonal |
|
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39 |
|
''' |
|
def init_func(m): |
|
classname = m.__class__.__name__ |
|
if hasattr(m, 'weight') and (classname.find('Conv') != -1 |
|
or classname.find('Linear') != -1): |
|
if init_type == 'normal': |
|
nn.init.normal_(m.weight.data, 0.0, gain) |
|
elif init_type == 'xavier': |
|
nn.init.xavier_normal_(m.weight.data, gain=gain) |
|
elif init_type == 'kaiming': |
|
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
elif init_type == 'orthogonal': |
|
nn.init.orthogonal_(m.weight.data, gain=gain) |
|
|
|
if hasattr(m, 'bias') and m.bias is not None: |
|
nn.init.constant_(m.bias.data, 0.0) |
|
|
|
elif classname.find('BatchNorm2d') != -1: |
|
nn.init.normal_(m.weight.data, 1.0, gain) |
|
nn.init.constant_(m.bias.data, 0.0) |
|
|
|
self.apply(init_func) |
|
|
|
|
|
class Residual3D(BaseNetwork): |
|
def __init__(self, numIn, numOut): |
|
super(Residual3D, self).__init__() |
|
self.numIn = numIn |
|
self.numOut = numOut |
|
self.with_bias = True |
|
|
|
self.bn = nn.BatchNorm3d(self.numIn) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv1 = nn.Conv3d(self.numIn, |
|
self.numOut, |
|
bias=self.with_bias, |
|
kernel_size=3, |
|
stride=1, |
|
padding=2, |
|
dilation=2) |
|
|
|
self.bn1 = nn.BatchNorm3d(self.numOut) |
|
self.conv2 = nn.Conv3d(self.numOut, |
|
self.numOut, |
|
bias=self.with_bias, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
self.bn2 = nn.BatchNorm3d(self.numOut) |
|
self.conv3 = nn.Conv3d(self.numOut, |
|
self.numOut, |
|
bias=self.with_bias, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
if self.numIn != self.numOut: |
|
self.conv4 = nn.Conv3d(self.numIn, |
|
self.numOut, |
|
bias=self.with_bias, |
|
kernel_size=1) |
|
self.init_weights() |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
|
|
|
|
if self.numIn != self.numOut: |
|
residual = self.conv4(x) |
|
|
|
return out + residual |
|
|
|
|
|
class VolumeEncoder(BaseNetwork): |
|
"""CycleGan Encoder""" |
|
|
|
def __init__(self, num_in=3, num_out=32, num_stacks=2): |
|
super(VolumeEncoder, self).__init__() |
|
self.num_in = num_in |
|
self.num_out = num_out |
|
self.num_inter = 8 |
|
self.num_stacks = num_stacks |
|
self.with_bias = True |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv1 = nn.Conv3d(self.num_in, |
|
self.num_inter, |
|
bias=self.with_bias, |
|
kernel_size=5, |
|
stride=2, |
|
padding=4, |
|
dilation=2) |
|
|
|
self.bn1 = nn.BatchNorm3d(self.num_inter) |
|
self.conv2 = nn.Conv3d(self.num_inter, |
|
self.num_out, |
|
bias=self.with_bias, |
|
kernel_size=5, |
|
stride=2, |
|
padding=4, |
|
dilation=2) |
|
|
|
self.bn2 = nn.BatchNorm3d(self.num_out) |
|
|
|
self.conv_out1 = nn.Conv3d(self.num_out, |
|
self.num_out, |
|
bias=self.with_bias, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
dilation=1) |
|
self.conv_out2 = nn.Conv3d(self.num_out, |
|
self.num_out, |
|
bias=self.with_bias, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
dilation=1) |
|
|
|
for idx in range(self.num_stacks): |
|
self.add_module("res" + str(idx), |
|
Residual3D(self.num_out, self.num_out)) |
|
|
|
self.init_weights() |
|
|
|
def forward(self, x, intermediate_output=True): |
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out_lst = [] |
|
for idx in range(self.num_stacks): |
|
out = self._modules["res" + str(idx)](out) |
|
out_lst.append(out) |
|
|
|
if intermediate_output: |
|
return out_lst |
|
else: |
|
return [out_lst[-1]] |
|
|