|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
from lib.common.seg3d_lossless import Seg3dLossless |
|
from lib.dataset.Evaluator import Evaluator |
|
from lib.net import HGPIFuNet |
|
from lib.common.train_util import * |
|
from lib.common.render import Render |
|
from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility |
|
import warnings |
|
import logging |
|
import torch |
|
import lib.smplx as smplx |
|
import numpy as np |
|
from torch import nn |
|
import os.path as osp |
|
|
|
from skimage.transform import resize |
|
import pytorch_lightning as pl |
|
from huggingface_hub import cached_download |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
logging.getLogger("lightning").setLevel(logging.ERROR) |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
class ICON(pl.LightningModule): |
|
def __init__(self, cfg): |
|
super(ICON, self).__init__() |
|
|
|
self.cfg = cfg |
|
self.batch_size = self.cfg.batch_size |
|
self.lr_G = self.cfg.lr_G |
|
|
|
self.use_sdf = cfg.sdf |
|
self.prior_type = cfg.net.prior_type |
|
self.mcube_res = cfg.mcube_res |
|
self.clean_mesh_flag = cfg.clean_mesh |
|
|
|
self.netG = HGPIFuNet( |
|
self.cfg, |
|
self.cfg.projection_mode, |
|
error_term=nn.SmoothL1Loss() if self.use_sdf else nn.MSELoss(), |
|
) |
|
|
|
|
|
self.evaluator = Evaluator( |
|
device=torch.device(f"cuda:{self.cfg.gpus[0]}")) |
|
|
|
self.resolutions = ( |
|
np.logspace( |
|
start=5, |
|
stop=np.log2(self.mcube_res), |
|
base=2, |
|
num=int(np.log2(self.mcube_res) - 4), |
|
endpoint=True, |
|
) |
|
+ 1.0 |
|
) |
|
self.resolutions = self.resolutions.astype(np.int16).tolist() |
|
|
|
self.icon_keys = ["smpl_verts", "smpl_faces", "smpl_vis", "smpl_cmap"] |
|
self.pamir_keys = ["voxel_verts", |
|
"voxel_faces", "pad_v_num", "pad_f_num"] |
|
|
|
self.reconEngine = Seg3dLossless( |
|
query_func=query_func, |
|
b_min=[[-1.0, 1.0, -1.0]], |
|
b_max=[[1.0, -1.0, 1.0]], |
|
resolutions=self.resolutions, |
|
align_corners=True, |
|
balance_value=0.50, |
|
device=torch.device(f"cuda:{self.cfg.test_gpus[0]}"), |
|
visualize=False, |
|
debug=False, |
|
use_cuda_impl=False, |
|
faster=True, |
|
) |
|
|
|
self.render = Render( |
|
size=512, device=torch.device(f"cuda:{self.cfg.test_gpus[0]}") |
|
) |
|
self.smpl_data = SMPLX() |
|
|
|
self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create( |
|
self.smpl_data.model_dir, |
|
kid_template_path=cached_download(osp.join(self.smpl_data.model_dir, |
|
f"{smpl_type}/{smpl_type}_kid_template.npy"), use_auth_token=os.environ['ICON']), |
|
model_type=smpl_type, |
|
gender=gender, |
|
age=age, |
|
v_template=v_template, |
|
use_face_contour=False, |
|
ext="pkl", |
|
) |
|
|
|
self.in_geo = [item[0] for item in cfg.net.in_geo] |
|
self.in_nml = [item[0] for item in cfg.net.in_nml] |
|
self.in_geo_dim = [item[1] for item in cfg.net.in_geo] |
|
self.in_total = self.in_geo + self.in_nml |
|
self.smpl_dim = cfg.net.smpl_dim |
|
|
|
self.export_dir = None |
|
self.result_eval = {} |
|
|
|
def get_progress_bar_dict(self): |
|
tqdm_dict = super().get_progress_bar_dict() |
|
if "v_num" in tqdm_dict: |
|
del tqdm_dict["v_num"] |
|
return tqdm_dict |
|
|
|
|
|
def configure_optimizers(self): |
|
|
|
|
|
weight_decay = self.cfg.weight_decay |
|
momentum = self.cfg.momentum |
|
|
|
optim_params_G = [ |
|
{"params": self.netG.if_regressor.parameters(), "lr": self.lr_G} |
|
] |
|
|
|
if self.cfg.net.use_filter: |
|
optim_params_G.append( |
|
{"params": self.netG.F_filter.parameters(), "lr": self.lr_G} |
|
) |
|
|
|
if self.cfg.net.prior_type == "pamir": |
|
optim_params_G.append( |
|
{"params": self.netG.ve.parameters(), "lr": self.lr_G} |
|
) |
|
|
|
if self.cfg.optim == "Adadelta": |
|
|
|
optimizer_G = torch.optim.Adadelta( |
|
optim_params_G, lr=self.lr_G, weight_decay=weight_decay |
|
) |
|
|
|
elif self.cfg.optim == "Adam": |
|
|
|
optimizer_G = torch.optim.Adam( |
|
optim_params_G, lr=self.lr_G, weight_decay=weight_decay |
|
) |
|
|
|
elif self.cfg.optim == "RMSprop": |
|
|
|
optimizer_G = torch.optim.RMSprop( |
|
optim_params_G, |
|
lr=self.lr_G, |
|
weight_decay=weight_decay, |
|
momentum=momentum, |
|
) |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
scheduler_G = torch.optim.lr_scheduler.MultiStepLR( |
|
optimizer_G, milestones=self.cfg.schedule, gamma=self.cfg.gamma |
|
) |
|
|
|
return [optimizer_G], [scheduler_G] |
|
|
|
def training_step(self, batch, batch_idx): |
|
|
|
if not self.cfg.fast_dev: |
|
export_cfg(self.logger, self.cfg) |
|
|
|
self.netG.train() |
|
|
|
in_tensor_dict = { |
|
"sample": batch["samples_geo"].permute(0, 2, 1), |
|
"calib": batch["calib"], |
|
"label": batch["labels_geo"].unsqueeze(1), |
|
} |
|
|
|
for name in self.in_total: |
|
in_tensor_dict.update({name: batch[name]}) |
|
|
|
if self.prior_type == "icon": |
|
for key in self.icon_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
elif self.prior_type == "pamir": |
|
for key in self.pamir_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
else: |
|
pass |
|
|
|
preds_G, error_G = self.netG(in_tensor_dict) |
|
|
|
acc, iou, prec, recall = self.evaluator.calc_acc( |
|
preds_G.flatten(), |
|
in_tensor_dict["label"].flatten(), |
|
0.5, |
|
use_sdf=self.cfg.sdf, |
|
) |
|
|
|
|
|
metrics_log = { |
|
"train_loss": error_G.item(), |
|
"train_acc": acc.item(), |
|
"train_iou": iou.item(), |
|
"train_prec": prec.item(), |
|
"train_recall": recall.item(), |
|
} |
|
|
|
tf_log = tf_log_convert(metrics_log) |
|
bar_log = bar_log_convert(metrics_log) |
|
|
|
if batch_idx % int(self.cfg.freq_show_train) == 0: |
|
|
|
with torch.no_grad(): |
|
self.render_func(in_tensor_dict, dataset="train") |
|
|
|
metrics_return = { |
|
k.replace("train_", ""): torch.tensor(v) for k, v in metrics_log.items() |
|
} |
|
|
|
metrics_return.update( |
|
{"loss": error_G, "log": tf_log, "progress_bar": bar_log}) |
|
|
|
return metrics_return |
|
|
|
def training_epoch_end(self, outputs): |
|
|
|
if [] in outputs: |
|
outputs = outputs[0] |
|
|
|
|
|
metrics_log = { |
|
"train_avgloss": batch_mean(outputs, "loss"), |
|
"train_avgiou": batch_mean(outputs, "iou"), |
|
"train_avgprec": batch_mean(outputs, "prec"), |
|
"train_avgrecall": batch_mean(outputs, "recall"), |
|
"train_avgacc": batch_mean(outputs, "acc"), |
|
} |
|
|
|
tf_log = tf_log_convert(metrics_log) |
|
|
|
return {"log": tf_log} |
|
|
|
def validation_step(self, batch, batch_idx): |
|
|
|
self.netG.eval() |
|
self.netG.training = False |
|
|
|
in_tensor_dict = { |
|
"sample": batch["samples_geo"].permute(0, 2, 1), |
|
"calib": batch["calib"], |
|
"label": batch["labels_geo"].unsqueeze(1), |
|
} |
|
|
|
for name in self.in_total: |
|
in_tensor_dict.update({name: batch[name]}) |
|
|
|
if self.prior_type == "icon": |
|
for key in self.icon_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
elif self.prior_type == "pamir": |
|
for key in self.pamir_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
else: |
|
pass |
|
|
|
preds_G, error_G = self.netG(in_tensor_dict) |
|
|
|
acc, iou, prec, recall = self.evaluator.calc_acc( |
|
preds_G.flatten(), |
|
in_tensor_dict["label"].flatten(), |
|
0.5, |
|
use_sdf=self.cfg.sdf, |
|
) |
|
|
|
if batch_idx % int(self.cfg.freq_show_val) == 0: |
|
with torch.no_grad(): |
|
self.render_func(in_tensor_dict, dataset="val", idx=batch_idx) |
|
|
|
metrics_return = { |
|
"val_loss": error_G, |
|
"val_acc": acc, |
|
"val_iou": iou, |
|
"val_prec": prec, |
|
"val_recall": recall, |
|
} |
|
|
|
return metrics_return |
|
|
|
def validation_epoch_end(self, outputs): |
|
|
|
|
|
metrics_log = { |
|
"val_avgloss": batch_mean(outputs, "val_loss"), |
|
"val_avgacc": batch_mean(outputs, "val_acc"), |
|
"val_avgiou": batch_mean(outputs, "val_iou"), |
|
"val_avgprec": batch_mean(outputs, "val_prec"), |
|
"val_avgrecall": batch_mean(outputs, "val_recall"), |
|
} |
|
|
|
tf_log = tf_log_convert(metrics_log) |
|
|
|
return {"log": tf_log} |
|
|
|
def compute_vis_cmap(self, smpl_type, smpl_verts, smpl_faces): |
|
|
|
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1) |
|
smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long()) |
|
if smpl_type == "smpl": |
|
smplx_ind = self.smpl_data.smpl2smplx(np.arange(smpl_vis.shape[0])) |
|
else: |
|
smplx_ind = np.arange(smpl_vis.shape[0]) |
|
smpl_cmap = self.smpl_data.get_smpl_mat(smplx_ind) |
|
|
|
return { |
|
"smpl_vis": smpl_vis.unsqueeze(0).to(self.device), |
|
"smpl_cmap": smpl_cmap.unsqueeze(0).to(self.device), |
|
"smpl_verts": smpl_verts.unsqueeze(0), |
|
} |
|
|
|
@torch.enable_grad() |
|
def optim_body(self, in_tensor_dict, batch): |
|
|
|
smpl_model = self.get_smpl_model( |
|
batch["type"][0], batch["gender"][0], batch["age"][0], None |
|
).to(self.device) |
|
in_tensor_dict["smpl_faces"] = ( |
|
torch.tensor(smpl_model.faces.astype(np.int)) |
|
.long() |
|
.unsqueeze(0) |
|
.to(self.device) |
|
) |
|
|
|
|
|
optimed_pose = torch.tensor( |
|
batch["body_pose"][0], device=self.device, requires_grad=True |
|
) |
|
optimed_trans = torch.tensor( |
|
batch["transl"][0], device=self.device, requires_grad=True |
|
) |
|
optimed_betas = torch.tensor( |
|
batch["betas"][0], device=self.device, requires_grad=True |
|
) |
|
optimed_orient = torch.tensor( |
|
batch["global_orient"][0], device=self.device, requires_grad=True |
|
) |
|
|
|
optimizer_smpl = torch.optim.SGD( |
|
[optimed_pose, optimed_trans, optimed_betas, optimed_orient], |
|
lr=1e-3, |
|
momentum=0.9, |
|
) |
|
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau( |
|
optimizer_smpl, mode="min", factor=0.5, verbose=0, min_lr=1e-5, patience=5 |
|
) |
|
loop_smpl = range(50) |
|
for i in loop_smpl: |
|
|
|
optimizer_smpl.zero_grad() |
|
|
|
|
|
smpl_out = smpl_model( |
|
betas=optimed_betas, |
|
body_pose=optimed_pose, |
|
global_orient=optimed_orient, |
|
transl=optimed_trans, |
|
return_verts=True, |
|
) |
|
|
|
smpl_verts = smpl_out.vertices[0] * 100.0 |
|
smpl_verts = projection( |
|
smpl_verts, batch["calib"][0], format="tensor") |
|
smpl_verts[:, 1] *= -1 |
|
|
|
self.render.load_meshes( |
|
smpl_verts, in_tensor_dict["smpl_faces"]) |
|
( |
|
in_tensor_dict["T_normal_F"], |
|
in_tensor_dict["T_normal_B"], |
|
) = self.render.get_rgb_image() |
|
|
|
T_mask_F, T_mask_B = self.render.get_silhouette_image() |
|
|
|
with torch.no_grad(): |
|
( |
|
in_tensor_dict["normal_F"], |
|
in_tensor_dict["normal_B"], |
|
) = self.netG.normal_filter(in_tensor_dict) |
|
|
|
|
|
diff_F_smpl = torch.abs( |
|
in_tensor_dict["T_normal_F"] - in_tensor_dict["normal_F"] |
|
) |
|
diff_B_smpl = torch.abs( |
|
in_tensor_dict["T_normal_B"] - in_tensor_dict["normal_B"] |
|
) |
|
loss = (diff_F_smpl + diff_B_smpl).mean() |
|
|
|
|
|
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0] |
|
gt_arr = torch.cat( |
|
[in_tensor_dict["normal_F"][0], in_tensor_dict["normal_B"][0]], dim=2 |
|
).permute(1, 2, 0) |
|
gt_arr = ((gt_arr + 1.0) * 0.5).to(self.device) |
|
bg_color = ( |
|
torch.Tensor([0.5, 0.5, 0.5]).unsqueeze( |
|
0).unsqueeze(0).to(self.device) |
|
) |
|
gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float() |
|
loss += torch.abs(smpl_arr - gt_arr).mean() |
|
|
|
|
|
|
|
|
|
|
|
loss.backward(retain_graph=True) |
|
optimizer_smpl.step() |
|
scheduler_smpl.step(loss) |
|
in_tensor_dict["smpl_verts"] = smpl_verts.unsqueeze(0) |
|
|
|
in_tensor_dict.update( |
|
self.compute_vis_cmap( |
|
batch["type"][0], |
|
in_tensor_dict["smpl_verts"][0], |
|
in_tensor_dict["smpl_faces"][0], |
|
) |
|
) |
|
|
|
features, inter = self.netG.filter(in_tensor_dict, return_inter=True) |
|
|
|
return features, inter, in_tensor_dict |
|
|
|
@torch.enable_grad() |
|
def optim_cloth(self, verts_pr, faces_pr, inter): |
|
|
|
|
|
verts_pr -= (self.resolutions[-1] - 1) / 2.0 |
|
verts_pr /= (self.resolutions[-1] - 1) / 2.0 |
|
|
|
losses = { |
|
"cloth": {"weight": 5.0, "value": 0.0}, |
|
"edge": {"weight": 100.0, "value": 0.0}, |
|
"normal": {"weight": 0.2, "value": 0.0}, |
|
"laplacian": {"weight": 100.0, "value": 0.0}, |
|
"smpl": {"weight": 1.0, "value": 0.0}, |
|
"deform": {"weight": 20.0, "value": 0.0}, |
|
} |
|
|
|
deform_verts = torch.full( |
|
verts_pr.shape, 0.0, device=self.device, requires_grad=True |
|
) |
|
optimizer_cloth = torch.optim.SGD( |
|
[deform_verts], lr=1e-1, momentum=0.9) |
|
scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau( |
|
optimizer_cloth, mode="min", factor=0.1, verbose=0, min_lr=1e-3, patience=5 |
|
) |
|
|
|
loop_cloth = range(100) |
|
|
|
for i in loop_cloth: |
|
|
|
optimizer_cloth.zero_grad() |
|
|
|
self.render.load_meshes( |
|
verts_pr.unsqueeze(0).to(self.device), |
|
faces_pr.unsqueeze(0).to(self.device).long(), |
|
deform_verts, |
|
) |
|
P_normal_F, P_normal_B = self.render.get_rgb_image() |
|
|
|
update_mesh_shape_prior_losses(self.render.mesh, losses) |
|
diff_F_cloth = torch.abs(P_normal_F[0] - inter[:3]) |
|
diff_B_cloth = torch.abs(P_normal_B[0] - inter[3:]) |
|
losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean() |
|
losses["deform"]["value"] = torch.topk( |
|
torch.abs(deform_verts.flatten()), 30 |
|
)[0].mean() |
|
|
|
|
|
cloth_loss = torch.tensor(0.0, device=self.device) |
|
pbar_desc = "" |
|
|
|
for k in losses.keys(): |
|
if k != "smpl": |
|
cloth_loss_per_cls = losses[k]["value"] * \ |
|
losses[k]["weight"] |
|
pbar_desc += f"{k}: {cloth_loss_per_cls:.3f} | " |
|
cloth_loss += cloth_loss_per_cls |
|
|
|
|
|
cloth_loss.backward(retain_graph=True) |
|
optimizer_cloth.step() |
|
scheduler_cloth.step(cloth_loss) |
|
|
|
|
|
deform_verts = deform_verts.flatten().detach() |
|
deform_verts[torch.topk(torch.abs(deform_verts), 30)[ |
|
1]] = deform_verts.mean() |
|
deform_verts = deform_verts.view(-1, 3).cpu() |
|
|
|
verts_pr += deform_verts |
|
verts_pr *= (self.resolutions[-1] - 1) / 2.0 |
|
verts_pr += (self.resolutions[-1] - 1) / 2.0 |
|
|
|
return verts_pr |
|
|
|
def test_step(self, batch, batch_idx): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.evaluator._normal_render is None: |
|
self.evaluator.init_gl() |
|
|
|
self.netG.eval() |
|
self.netG.training = False |
|
in_tensor_dict = {} |
|
|
|
|
|
mesh_name = batch["subject"][0] |
|
mesh_rot = batch["rotation"][0].item() |
|
ckpt_dir = self.cfg.name |
|
|
|
for kid, key in enumerate(self.cfg.dataset.noise_type): |
|
ckpt_dir += f"_{key}_{self.cfg.dataset.noise_scale[kid]}" |
|
|
|
if self.cfg.optim_cloth: |
|
ckpt_dir += "_optim_cloth" |
|
if self.cfg.optim_body: |
|
ckpt_dir += "_optim_body" |
|
|
|
self.export_dir = osp.join(self.cfg.results_path, ckpt_dir, mesh_name) |
|
os.makedirs(self.export_dir, exist_ok=True) |
|
|
|
for name in self.in_total: |
|
if name in batch.keys(): |
|
in_tensor_dict.update({name: batch[name]}) |
|
|
|
|
|
in_tensor_dict.update( |
|
self.evaluator.render_normal( |
|
batch["smpl_verts"], batch["smpl_faces"]) |
|
) |
|
|
|
|
|
(xy, z) = batch["smpl_verts"][0].split([2, 1], dim=1) |
|
smpl_vis = get_visibility( |
|
xy, |
|
z, |
|
torch.as_tensor(self.smpl_data.faces).type_as( |
|
batch["smpl_verts"]).long(), |
|
) |
|
in_tensor_dict.update({"smpl_vis": smpl_vis.unsqueeze(0)}) |
|
|
|
if self.prior_type == "icon": |
|
for key in self.icon_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
elif self.prior_type == "pamir": |
|
for key in self.pamir_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
else: |
|
pass |
|
|
|
with torch.no_grad(): |
|
if self.cfg.optim_body: |
|
features, inter, in_tensor_dict = self.optim_body( |
|
in_tensor_dict, batch) |
|
else: |
|
features, inter = self.netG.filter( |
|
in_tensor_dict, return_inter=True) |
|
sdf = self.reconEngine( |
|
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None |
|
) |
|
|
|
|
|
image = ( |
|
in_tensor_dict["image"][0].permute( |
|
1, 2, 0).detach().cpu().numpy() + 1.0 |
|
) * 0.5 |
|
smpl_F = ( |
|
in_tensor_dict["T_normal_F"][0].permute( |
|
1, 2, 0).detach().cpu().numpy() |
|
+ 1.0 |
|
) * 0.5 |
|
smpl_B = ( |
|
in_tensor_dict["T_normal_B"][0].permute( |
|
1, 2, 0).detach().cpu().numpy() |
|
+ 1.0 |
|
) * 0.5 |
|
image_inter = np.concatenate( |
|
self.tensor2image(512, inter[0]) + [smpl_F, smpl_B, image], axis=1 |
|
) |
|
Image.fromarray((image_inter * 255.0).astype(np.uint8)).save( |
|
osp.join(self.export_dir, f"{mesh_rot}_inter.png") |
|
) |
|
|
|
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf) |
|
|
|
if self.clean_mesh_flag: |
|
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr) |
|
|
|
if self.cfg.optim_cloth: |
|
verts_pr = self.optim_cloth(verts_pr, faces_pr, inter[0].detach()) |
|
|
|
verts_gt = batch["verts"][0] |
|
faces_gt = batch["faces"][0] |
|
|
|
self.result_eval.update( |
|
{ |
|
"verts_gt": verts_gt, |
|
"faces_gt": faces_gt, |
|
"verts_pr": verts_pr, |
|
"faces_pr": faces_pr, |
|
"recon_size": (self.resolutions[-1] - 1.0), |
|
"calib": batch["calib"][0], |
|
} |
|
) |
|
|
|
self.evaluator.set_mesh(self.result_eval, scale_factor=1.0) |
|
self.evaluator.space_transfer() |
|
|
|
chamfer, p2s = self.evaluator.calculate_chamfer_p2s( |
|
sampled_points=1000) |
|
normal_consist = self.evaluator.calculate_normal_consist( |
|
save_demo_img=osp.join(self.export_dir, f"{mesh_rot}_nc.png") |
|
) |
|
|
|
test_log = {"chamfer": chamfer, "p2s": p2s, "NC": normal_consist} |
|
|
|
return test_log |
|
|
|
def test_epoch_end(self, outputs): |
|
|
|
|
|
|
|
accu_outputs = accumulate( |
|
outputs, |
|
rot_num=3, |
|
split={ |
|
"thuman2": (0, 5), |
|
}, |
|
) |
|
|
|
print(colored(self.cfg.name, "green")) |
|
print(colored(self.cfg.dataset.noise_scale, "green")) |
|
|
|
self.logger.experiment.add_hparams( |
|
hparam_dict={"lr_G": self.lr_G, "bsize": self.batch_size}, |
|
metric_dict=accu_outputs, |
|
) |
|
|
|
np.save( |
|
osp.join(self.export_dir, "../test_results.npy"), |
|
accu_outputs, |
|
allow_pickle=True, |
|
) |
|
|
|
return accu_outputs |
|
|
|
def tensor2image(self, height, inter): |
|
|
|
all = [] |
|
for dim in self.in_geo_dim: |
|
img = resize( |
|
np.tile( |
|
((inter[:dim].cpu().numpy() + 1.0) / |
|
2.0).transpose(1, 2, 0), |
|
(1, 1, int(3 / dim)), |
|
), |
|
(height, height), |
|
anti_aliasing=True, |
|
) |
|
|
|
all.append(img) |
|
inter = inter[dim:] |
|
|
|
return all |
|
|
|
def render_func(self, in_tensor_dict, dataset="title", idx=0): |
|
|
|
for name in in_tensor_dict.keys(): |
|
in_tensor_dict[name] = in_tensor_dict[name][0:1] |
|
|
|
self.netG.eval() |
|
features, inter = self.netG.filter(in_tensor_dict, return_inter=True) |
|
sdf = self.reconEngine( |
|
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None |
|
) |
|
|
|
if sdf is not None: |
|
render = self.reconEngine.display(sdf) |
|
|
|
image_pred = np.flip(render[:, :, ::-1], axis=0) |
|
height = image_pred.shape[0] |
|
|
|
image_gt = resize( |
|
((in_tensor_dict["image"].cpu().numpy()[0] + 1.0) / 2.0).transpose( |
|
1, 2, 0 |
|
), |
|
(height, height), |
|
anti_aliasing=True, |
|
) |
|
image_inter = self.tensor2image(height, inter[0]) |
|
image = np.concatenate( |
|
[image_pred, image_gt] + image_inter, axis=1) |
|
|
|
step_id = self.global_step if dataset == "train" else self.global_step + idx |
|
self.logger.experiment.add_image( |
|
tag=f"Occupancy-{dataset}/{step_id}", |
|
img_tensor=image.transpose(2, 0, 1), |
|
global_step=step_id, |
|
) |
|
|
|
def test_single(self, batch): |
|
|
|
self.netG.eval() |
|
self.netG.training = False |
|
in_tensor_dict = {} |
|
|
|
for name in self.in_total: |
|
if name in batch.keys(): |
|
in_tensor_dict.update({name: batch[name]}) |
|
|
|
if self.prior_type == "icon": |
|
for key in self.icon_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
elif self.prior_type == "pamir": |
|
for key in self.pamir_keys: |
|
in_tensor_dict.update({key: batch[key]}) |
|
else: |
|
pass |
|
|
|
features, inter = self.netG.filter(in_tensor_dict, return_inter=True) |
|
sdf = self.reconEngine( |
|
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None |
|
) |
|
|
|
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf) |
|
|
|
if self.clean_mesh_flag: |
|
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr) |
|
|
|
verts_pr -= (self.resolutions[-1] - 1) / 2.0 |
|
verts_pr /= (self.resolutions[-1] - 1) / 2.0 |
|
|
|
return verts_pr, faces_pr, inter |
|
|