|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import os |
|
|
|
model_name = "CardinalOperations/ORLM-LLaMA-3-8B" |
|
device_map = 'cuda' |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
def load_model() -> AutoModelForCausalLM: |
|
return AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map) |
|
|
|
def load_tokenizer() -> AutoTokenizer: |
|
return AutoTokenizer.from_pretrained(model_name) |
|
|
|
def preprocess_messages(message: str, history: list, system_prompt: str) -> dict: |
|
messages = [{'role': 'system', 'content': system_prompt}, {'role': 'user', 'content': message}] |
|
prompt = load_tokenizer().apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
return prompt |
|
|
|
def generate_text(prompt: str, max_new_tokens: int, temperature: float) -> str: |
|
model = load_model() |
|
terminators = [load_tokenizer().eos_token_id, load_tokenizer().convert_tokens_to_ids(['\n'])] |
|
temp = temperature + 0.1 |
|
outputs = model.generate( |
|
prompt, |
|
max_new_tokens=max_new_tokens, |
|
eos_token_id=terminators[0], |
|
do_sample=True, |
|
temperature=temp, |
|
top_p=0.9 |
|
) |
|
return load_tokenizer().decode(outputs[0], skip_special_tokens=True) |
|
|
|
def chat_function( |
|
message: str, |
|
history: list, |
|
system_prompt: str, |
|
max_new_tokens: int, |
|
temperature: float |
|
) -> str: |
|
prompt = preprocess_messages(message, history, system_prompt) |
|
return generate_text(prompt, max_new_tokens, temperature) |
|
|
|
gr.ChatInterface( |
|
chat_function, |
|
chatbot=gr.Chatbot(height=400), |
|
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7), |
|
title="ORLM Chat", |
|
description="""Chat with ORLM""", |
|
theme="soft", |
|
additional_inputs=[ |
|
gr.Textbox("You shall answer to all the questions as very smart AI", label="System Prompt"), |
|
gr.Slider(512, 4096, label="Max New Tokens"), |
|
gr.Slider(0, 1, label="Temperature") |
|
] |
|
).launch(debug=True) |