|
import os |
|
from typing import List |
|
from chainlit.types import AskFileResponse |
|
from qdrant_client import QdrantClient |
|
from qdrant_client.http.models import Distance, VectorParams |
|
from langchain_qdrant import QdrantVectorStore |
|
|
|
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders import PyMuPDFLoader |
|
|
|
from langchain_openai.embeddings import OpenAIEmbeddings |
|
from langchain.storage import LocalFileStore |
|
from langchain.embeddings import CacheBackedEmbeddings |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain_core.globals import set_llm_cache |
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.caches import InMemoryCache |
|
from operator import itemgetter |
|
from langchain_core.runnables.passthrough import RunnablePassthrough |
|
from chainlit.types import AskFileResponse |
|
from typing import List |
|
import uuid |
|
import chainlit as cl |
|
|
|
set_llm_cache(InMemoryCache()) |
|
|
|
|
|
rag_system_prompt_template = """\ |
|
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. |
|
""" |
|
|
|
rag_message_list = [ |
|
{"role" : "system", "content" : rag_system_prompt_template}, |
|
] |
|
|
|
rag_user_prompt_template = """\ |
|
Question: |
|
{question} |
|
Context: |
|
{context} |
|
""" |
|
|
|
chat_prompt = ChatPromptTemplate.from_messages([ |
|
("system", rag_system_prompt_template), |
|
("human", rag_user_prompt_template) |
|
]) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
|
|
|
|
collection_name = f"pdf_to_parse_{uuid.uuid4()}" |
|
client = QdrantClient(":memory:") |
|
client.create_collection( |
|
collection_name=collection_name, |
|
vectors_config=VectorParams(size=1536, distance=Distance.COSINE), |
|
) |
|
|
|
|
|
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") |
|
|
|
def process_text_file(file: AskFileResponse): |
|
import tempfile |
|
with tempfile.NamedTemporaryFile(mode="w", delete=False) as temp_file: |
|
with open(temp_file.name, "wb") as f: |
|
f.write(file.content) |
|
|
|
Loader = PyMuPDFLoader |
|
|
|
loader = Loader(temp_file.name) |
|
documents = loader.load() |
|
docs = text_splitter.split_documents(documents) |
|
for i, doc in enumerate(docs): |
|
doc.metadata["source"] = f"source_{i}" |
|
return docs |
|
|
|
@cl.on_chat_start |
|
async def on_chat_start(): |
|
|
|
await cl.Message(content="Hello! This is a simply but powerful RAG app. It will build context on the fly & use LCEL chain to help with your questions. Special Bonus: this app will cache seen docs so it will expand knowledge base with every use!!").send() |
|
|
|
files = None |
|
|
|
|
|
while files == None: |
|
files = await cl.AskFileMessage( |
|
content="Please upload a PDF File file to begin!", |
|
accept=["application/pdf"], |
|
max_size_mb=2, |
|
timeout=180, |
|
).send() |
|
|
|
file = files[0] |
|
|
|
msg = cl.Message( |
|
content=f"Processing `{file.name}`...", disable_human_feedback=True |
|
) |
|
await msg.send() |
|
|
|
|
|
texts = process_text_file(file) |
|
|
|
print(f"Processing {len(texts)} text chunks") |
|
|
|
|
|
|
|
|
|
store = LocalFileStore("./cache/") |
|
cached_embedder = CacheBackedEmbeddings.from_bytes_store( |
|
core_embeddings, store, namespace=core_embeddings.model |
|
) |
|
print ('three') |
|
|
|
vectorstore = QdrantVectorStore( |
|
client=client, |
|
collection_name=collection_name, |
|
embedding=cached_embedder) |
|
vectorstore.add_documents(texts) |
|
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3}) |
|
|
|
|
|
|
|
chat_openai = ChatOpenAI() |
|
|
|
retrieval_augmented_qa_chain = ( |
|
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} |
|
| RunnablePassthrough.assign(context=itemgetter("context")) |
|
| chat_prompt | chat_openai |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
msg.content = f"Processing `{file.name}` done. You can now ask questions!" |
|
await msg.update() |
|
|
|
print ('five') |
|
|
|
cl.user_session.set("midterm_chain", retrieval_augmented_qa_chain) |
|
|
|
|
|
@cl.on_message |
|
async def main(message): |
|
midterm_chain = cl.user_session.get("midterm_chain") |
|
|
|
result = midterm_chain.invoke({"question": message.content}) |
|
|
|
|
|
response_message = cl.Message(content=result.content) |
|
|
|
|
|
|
|
|
|
await response_message.send() |