Spaces:
Sleeping
Sleeping
norman-codes
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
model_name = "norman-codes/transfer-learning-attempt1"
|
5 |
+
|
6 |
+
# Load the model and tokenizer from Hugging Face Hub
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
st.title("Text Generation with GPT-Neo")
|
11 |
+
st.write("This is a text generation model running on Hugging Face Spaces. Enter a prompt to generate text.")
|
12 |
+
|
13 |
+
prompt = st.text_input("Enter your prompt here:")
|
14 |
+
|
15 |
+
if st.button("Generate Text"):
|
16 |
+
with st.spinner("Generating..."):
|
17 |
+
# Encode the input prompt and generate text
|
18 |
+
input_ids = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids
|
19 |
+
generated_ids = model.generate(input_ids, max_length=100)
|
20 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
st.text_area("Generated Text:", value=generated_text, height=200, max_chars=None, key=None)
|