Spaces:
Runtime error
Runtime error
downgrade gradio to 2.9.0 from 3.0.17 for a better example UI
Browse files- README.md +2 -2
- __pycache__/bilateral_solver.cpython-38.pyc +0 -0
- app.py +12 -26
- description.html +9 -3
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: Selfmask
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
1 |
---
|
2 |
title: Selfmask
|
3 |
+
emoji: 😷
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 2.9.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
__pycache__/bilateral_solver.cpython-38.pyc
CHANGED
Binary files a/__pycache__/bilateral_solver.cpython-38.pyc and b/__pycache__/bilateral_solver.cpython-38.pyc differ
|
|
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from argparse import ArgumentParser, Namespace
|
2 |
from typing import Dict, List, Tuple
|
|
|
3 |
import yaml
|
4 |
import numpy as np
|
5 |
import cv2
|
@@ -26,23 +27,6 @@ parser.add_argument(
|
|
26 |
default="duts-dino-k234-nq20-224-swav-mocov2-dino-p16-sr10100.yaml"
|
27 |
)
|
28 |
|
29 |
-
# parser.add_argument(
|
30 |
-
# "--p_state_dict",
|
31 |
-
# type=str,
|
32 |
-
# default="/users/gyungin/selfmask_bak/ckpt/nq20_ndl6_bc_sr10100_duts_pm_all_k2,3,4_md_seed0_final/eval/hku_is/best_model.pt",
|
33 |
-
# )
|
34 |
-
#
|
35 |
-
# parser.add_argument(
|
36 |
-
# "--dataset_name", '-dn', type=str, default="duts",
|
37 |
-
# choices=["dut_omron", "duts", "ecssd"]
|
38 |
-
# )
|
39 |
-
|
40 |
-
# independent variables
|
41 |
-
# parser.add_argument("--use_gpu", type=bool, default=True)
|
42 |
-
# parser.add_argument('--seed', default=0, type=int)
|
43 |
-
# parser.add_argument("--dir_root", type=str, default="..")
|
44 |
-
# parser.add_argument("--gpu_id", type=int, default=2)
|
45 |
-
# parser.add_argument("--suffix", type=str, default='')
|
46 |
args: Namespace = parser.parse_args()
|
47 |
base_args = yaml.safe_load(open(f"{args.config}", 'r'))
|
48 |
base_args.pop("dataset_name")
|
@@ -54,15 +38,14 @@ model = get_model(arch="maskformer", configs=args).to(device)
|
|
54 |
model.load_state_dict(state_dict)
|
55 |
model.eval()
|
56 |
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
@torch.no_grad()
|
59 |
-
def main(
|
60 |
-
image: Image.Image,
|
61 |
-
size: int = 384,
|
62 |
-
max_size: int = 512,
|
63 |
-
mean: Tuple[float, float, float] = (0.485, 0.456, 0.406),
|
64 |
-
std: Tuple[float, float, float] = (0.229, 0.224, 0.225)
|
65 |
-
):
|
66 |
pil_image: Image.Image = resize(image, size=size, max_size=max_size)
|
67 |
image: torch.Tensor = normalize(to_tensor(pil_image), mean=list(mean), std=list(std)) # 3 x H x W
|
68 |
dict_outputs = model(image[None].to(device))
|
@@ -101,10 +84,11 @@ def main(
|
|
101 |
return super_imposed_img
|
102 |
# return pred_mask_bi
|
103 |
|
|
|
104 |
demo = gr.Interface(
|
105 |
fn=main,
|
106 |
-
inputs=gr.inputs.Image(type="pil"),
|
107 |
-
outputs="image",
|
108 |
examples=[f"resources/{fname}.jpg" for fname in [
|
109 |
"0053",
|
110 |
"0236",
|
@@ -124,6 +108,8 @@ demo = gr.Interface(
|
|
124 |
"sun_amnrcxhisjfrliwa",
|
125 |
"sun_bvyxpvkouzlfwwod"
|
126 |
]],
|
|
|
|
|
127 |
title="Unsupervised Salient Object Detection with Spectral Cluster Voting",
|
128 |
allow_flagging="never",
|
129 |
analytics_enabled=False
|
|
|
1 |
from argparse import ArgumentParser, Namespace
|
2 |
from typing import Dict, List, Tuple
|
3 |
+
import codecs
|
4 |
import yaml
|
5 |
import numpy as np
|
6 |
import cv2
|
|
|
27 |
default="duts-dino-k234-nq20-224-swav-mocov2-dino-p16-sr10100.yaml"
|
28 |
)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
args: Namespace = parser.parse_args()
|
31 |
base_args = yaml.safe_load(open(f"{args.config}", 'r'))
|
32 |
base_args.pop("dataset_name")
|
|
|
38 |
model.load_state_dict(state_dict)
|
39 |
model.eval()
|
40 |
|
41 |
+
size: int = 384
|
42 |
+
max_size: int = 512
|
43 |
+
mean: Tuple[float, float, float] = (0.485, 0.456, 0.406)
|
44 |
+
std: Tuple[float, float, float] = (0.229, 0.224, 0.225)
|
45 |
+
|
46 |
|
47 |
@torch.no_grad()
|
48 |
+
def main(image: Image):
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
pil_image: Image.Image = resize(image, size=size, max_size=max_size)
|
50 |
image: torch.Tensor = normalize(to_tensor(pil_image), mean=list(mean), std=list(std)) # 3 x H x W
|
51 |
dict_outputs = model(image[None].to(device))
|
|
|
84 |
return super_imposed_img
|
85 |
# return pred_mask_bi
|
86 |
|
87 |
+
|
88 |
demo = gr.Interface(
|
89 |
fn=main,
|
90 |
+
inputs=gr.inputs.Image(type="pil", source="upload", tool="editor"),
|
91 |
+
outputs=gr.outputs.Image(type="numpy", label="saliency map"), # "image",
|
92 |
examples=[f"resources/{fname}.jpg" for fname in [
|
93 |
"0053",
|
94 |
"0236",
|
|
|
108 |
"sun_amnrcxhisjfrliwa",
|
109 |
"sun_bvyxpvkouzlfwwod"
|
110 |
]],
|
111 |
+
examples_per_page=20,
|
112 |
+
description=codecs.open("description.html", 'r', "utf-8").read(),
|
113 |
title="Unsupervised Salient Object Detection with Spectral Cluster Voting",
|
114 |
allow_flagging="never",
|
115 |
analytics_enabled=False
|
description.html
CHANGED
@@ -1,10 +1,16 @@
|
|
1 |
<!DOCTYPE html>
|
2 |
<html lang="en">
|
3 |
<head>
|
4 |
-
|
5 |
-
|
6 |
</head>
|
7 |
<body>
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
</body>
|
10 |
</html>
|
|
|
1 |
<!DOCTYPE html>
|
2 |
<html lang="en">
|
3 |
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<title>Title</title>
|
6 |
</head>
|
7 |
<body>
|
8 |
+
This is a demo of <a href="https://arxiv.org/pdf/2203.12614.pdf">Unsupervised Salient Object Detection with Spectral Cluster Voting</a> (CVPRW 2022).</br>
|
9 |
+
In the paper, we tackle the challenging task of unsupervised salient object detection (SOD) by leveraging spectral clustering on self-supervised features.
|
10 |
+
We make the following contributions:
|
11 |
+
(i) We revisit spectral clustering and demonstrate its potential to group the pixels of salient objects;
|
12 |
+
(ii) Given mask proposals from multiple applications of spectral clustering on image features computed from various self-supervised models, e.g., MoCov2, SwAV, DINO, we propose a simple but effective winner-takes-all voting mechanism for selecting the salient masks, leveraging object priors based on framing and distinctiveness;
|
13 |
+
(iii) Using the selected object segmentation as pseudo groundtruth masks, we train a salient object detector, dubbed SelfMask, which outperforms prior approaches on three unsupervised SOD benchmarks.
|
14 |
+
Code is publicly available at <a href="https://github.com/NoelShin/selfmask">our repo</a>.
|
15 |
</body>
|
16 |
</html>
|