File size: 9,647 Bytes
35188e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import math
import torch
import torch.nn as nn
from functools import partial

from networks.timm_vit import VisionTransformer, _cfg
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_


__all__ = [
    'deit_tiny_patch16_224', 'deit_small_patch16_224', 'deit_base_patch16_224',
    'deit_tiny_distilled_patch16_224', 'deit_small_distilled_patch16_224',
    'deit_base_distilled_patch16_224', 'deit_base_patch16_384',
    'deit_base_distilled_patch16_384',
]


class DistilledVisionTransformer(VisionTransformer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
        num_patches = self.patch_embed.num_patches
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))
        self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()

        trunc_normal_(self.dist_token, std=.02)
        trunc_normal_(self.pos_embed, std=.02)
        self.head_dist.apply(self._init_weights)

    def forward_features(self, x):
        # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
        # with slight modifications to add the dist_token
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        dist_token = self.dist_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, dist_token, x), dim=1)

        x = x + self.pos_embed
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x)
        return x[:, 0], x[:, 1]

    def forward(self, x):
        x, x_dist = self.forward_features(x)
        x = self.head(x)
        x_dist = self.head_dist(x_dist)
        if self.training:
            return x, x_dist
        else:
            # during inference, return the average of both classifier predictions
            return (x + x_dist) / 2

    def interpolate_pos_encoding(self, x, pos_embed):
        """Interpolate the learnable positional encoding to match the number of patches.

        x: B x (1 + 1 + N patches) x dim_embedding
        pos_embed: B x (1 + 1 + N patches) x dim_embedding

        return interpolated positional embedding
        """

        npatch = x.shape[1] - 2  # (H // patch_size * W // patch_size)
        N = pos_embed.shape[1] - 2  # 784 (= 28 x 28)

        if npatch == N:
            return pos_embed

        class_emb, distil_token, pos_embed = pos_embed[:, 0], pos_embed[:, 1], pos_embed[:, 2:]  # a learnable CLS token, learnable position embeddings

        dim = x.shape[-1]  # dimension of embeddings
        pos_embed = nn.functional.interpolate(
            pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),  # B x dim x 28 x 28
            scale_factor=math.sqrt(npatch / N) + 1e-5,  # noel: this can be a float, but the output shape will be integer.
            recompute_scale_factor=True,
            mode='bicubic'
        )
        # print("pos_embed", pos_embed.shape, npatch, N, math.sqrt(npatch/N), math.sqrt(npatch/N) * int(math.sqrt(N)))
        # exit(12)
        pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        pos_embed = torch.cat((class_emb.unsqueeze(0), distil_token.unsqueeze(0), pos_embed), dim=1)
        return pos_embed

    def get_tokens(
            self,
            x,
            layers: list,
            patch_tokens: bool = False,
            norm: bool = True,
            input_tokens: bool = False,
            post_pe: bool = False
    ):
        """Return intermediate tokens."""
        list_tokens: list = []

        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)
        dist_token = self.dist_token.expand(B, -1, -1)

        x = torch.cat((cls_tokens, dist_token, x), dim=1)

        if input_tokens:
            list_tokens.append(x)

        pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
        x = x + pos_embed

        if post_pe:
            list_tokens.append(x)

        x = self.pos_drop(x)

        for i, blk in enumerate(self.blocks):
            x = blk(x)  # B x # patches x dim
            if layers is None or i in layers:
                list_tokens.append(self.norm(x) if norm else x)

        tokens = torch.stack(list_tokens, dim=1)  # B x n_layers x (1 + # patches) x dim

        if not patch_tokens:
            return tokens[:, :, 0, :]  # index [CLS] tokens only, B x n_layers x dim

        else:
            return torch.cat((tokens[:, :, 0, :].unsqueeze(dim=2), tokens[:, :, 2:, :]), dim=2)  # exclude distil token.


@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_small_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
    model = VisionTransformer(
        img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model