Spaces:
Runtime error
Runtime error
File size: 7,122 Bytes
35188e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from scipy.sparse import diags
from scipy.sparse.linalg import cg
from scipy.sparse import csr_matrix
from scipy import ndimage
import numpy as np
from PIL import Image
RGB_TO_YUV = np.array([
[0.299, 0.587, 0.114],
[-0.168736, -0.331264, 0.5],
[0.5, -0.418688, -0.081312]])
YUV_TO_RGB = np.array([
[1.0, 0.0, 1.402],
[1.0, -0.34414, -0.71414],
[1.0, 1.772, 0.0]])
YUV_OFFSET = np.array([0, 128.0, 128.0]).reshape(1, 1, -1)
MAX_VAL = 255.0
def rgb2yuv(im):
return np.tensordot(im, RGB_TO_YUV, ([2], [1])) + YUV_OFFSET
def yuv2rgb(im):
return np.tensordot(im.astype(float) - YUV_OFFSET, YUV_TO_RGB, ([2], [1]))
def get_valid_idx(valid, candidates):
"""Find which values are present in a list and where they are located"""
locs = np.searchsorted(valid, candidates)
# Handle edge case where the candidate is larger than all valid values
locs = np.clip(locs, 0, len(valid) - 1)
# Identify which values are actually present
valid_idx = np.flatnonzero(valid[locs] == candidates)
locs = locs[valid_idx]
return valid_idx, locs
class BilateralGrid(object):
def __init__(self, im, sigma_spatial=32, sigma_luma=8, sigma_chroma=8):
im_yuv = rgb2yuv(im)
# Compute 5-dimensional XYLUV bilateral-space coordinates
Iy, Ix = np.mgrid[:im.shape[0], :im.shape[1]]
x_coords = (Ix / sigma_spatial).astype(int)
y_coords = (Iy / sigma_spatial).astype(int)
luma_coords = (im_yuv[..., 0] / sigma_luma).astype(int)
chroma_coords = (im_yuv[..., 1:] / sigma_chroma).astype(int)
coords = np.dstack((x_coords, y_coords, luma_coords, chroma_coords))
coords_flat = coords.reshape(-1, coords.shape[-1])
self.npixels, self.dim = coords_flat.shape
# Hacky "hash vector" for coordinates,
# Requires all scaled coordinates be < MAX_VAL
self.hash_vec = (MAX_VAL ** np.arange(self.dim))
# Construct S and B matrix
self._compute_factorization(coords_flat)
def _compute_factorization(self, coords_flat):
# Hash each coordinate in grid to a unique value
hashed_coords = self._hash_coords(coords_flat)
unique_hashes, unique_idx, idx = \
np.unique(hashed_coords, return_index=True, return_inverse=True)
# Identify unique set of vertices
unique_coords = coords_flat[unique_idx]
self.nvertices = len(unique_coords)
# Construct sparse splat matrix that maps from pixels to vertices
self.S = csr_matrix((np.ones(self.npixels), (idx, np.arange(self.npixels))))
# Construct sparse blur matrices.
# Note that these represent [1 0 1] blurs, excluding the central element
self.blurs = []
for d in range(self.dim):
blur = 0.0
for offset in (-1, 1):
offset_vec = np.zeros((1, self.dim))
offset_vec[:, d] = offset
neighbor_hash = self._hash_coords(unique_coords + offset_vec)
valid_coord, idx = get_valid_idx(unique_hashes, neighbor_hash)
blur = blur + csr_matrix((np.ones((len(valid_coord),)),
(valid_coord, idx)),
shape=(self.nvertices, self.nvertices))
self.blurs.append(blur)
def _hash_coords(self, coord):
"""Hacky function to turn a coordinate into a unique value"""
return np.dot(coord.reshape(-1, self.dim), self.hash_vec)
def splat(self, x):
return self.S.dot(x)
def slice(self, y):
return self.S.T.dot(y)
def blur(self, x):
"""Blur a bilateral-space vector with a 1 2 1 kernel in each dimension"""
assert x.shape[0] == self.nvertices
out = 2 * self.dim * x
for blur in self.blurs:
out = out + blur.dot(x)
return out
def filter(self, x):
"""Apply bilateral filter to an input x"""
return self.slice(self.blur(self.splat(x))) / \
self.slice(self.blur(self.splat(np.ones_like(x))))
def bistochastize(grid, maxiter=10):
"""Compute diagonal matrices to bistochastize a bilateral grid"""
m = grid.splat(np.ones(grid.npixels))
n = np.ones(grid.nvertices)
for i in range(maxiter):
n = np.sqrt(n * m / grid.blur(n))
# Correct m to satisfy the assumption of bistochastization regardless
# of how many iterations have been run.
m = n * grid.blur(n)
Dm = diags(m, 0)
Dn = diags(n, 0)
return Dn, Dm
class BilateralSolver(object):
def __init__(self, grid, params):
self.grid = grid
self.params = params
self.Dn, self.Dm = bistochastize(grid)
def solve(self, x, w):
# Check that w is a vector or a nx1 matrix
if w.ndim == 2:
assert (w.shape[1] == 1)
elif w.dim == 1:
w = w.reshape(w.shape[0], 1)
A_smooth = (self.Dm - self.Dn.dot(self.grid.blur(self.Dn)))
w_splat = self.grid.splat(w)
A_data = diags(w_splat[:, 0], 0)
A = self.params["lam"] * A_smooth + A_data
xw = x * w
b = self.grid.splat(xw)
# Use simple Jacobi preconditioner
A_diag = np.maximum(A.diagonal(), self.params["A_diag_min"])
M = diags(1 / A_diag, 0)
# Flat initialization
y0 = self.grid.splat(xw) / w_splat
yhat = np.empty_like(y0)
for d in range(x.shape[-1]):
yhat[..., d], info = cg(A, b[..., d], x0=y0[..., d], M=M, maxiter=self.params["cg_maxiter"],
tol=self.params["cg_tol"])
xhat = self.grid.slice(yhat)
return xhat
def bilateral_solver_output(
img: Image.Image,
target: np.ndarray,
sigma_spatial=16,
sigma_luma=16,
sigma_chroma=8
):
reference = np.array(img)
h, w = target.shape
confidence = np.ones((h, w)) * 0.999
grid_params = {
'sigma_luma': sigma_luma, # Brightness bandwidth
'sigma_chroma': sigma_chroma, # Color bandwidth
'sigma_spatial': sigma_spatial # Spatial bandwidth
}
bs_params = {
'lam': 256, # The strength of the smoothness parameter
'A_diag_min': 1e-5, # Clamp the diagonal of the A diagonal in the Jacobi preconditioner.
'cg_tol': 1e-5, # The tolerance on the convergence in PCG
'cg_maxiter': 25 # The number of PCG iterations
}
grid = BilateralGrid(reference, **grid_params)
t = target.reshape(-1, 1).astype(np.double)
c = confidence.reshape(-1, 1).astype(np.double)
## output solver, which is a soft value
output_solver = BilateralSolver(grid, bs_params).solve(t, c).reshape((h, w))
binary_solver = ndimage.binary_fill_holes(output_solver > 0.5)
labeled, nr_objects = ndimage.label(binary_solver)
nb_pixel = [np.sum(labeled == i) for i in range(nr_objects + 1)]
pixel_order = np.argsort(nb_pixel)
try:
binary_solver = labeled == pixel_order[-2]
except:
binary_solver = np.ones((h, w), dtype=bool)
return output_solver, binary_solver |