File size: 3,402 Bytes
39ee507
 
 
 
 
 
ffef866
39ee507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c5b73a
 
39ee507
ffef866
e7388f6
 
 
 
 
 
 
 
39ee507
 
 
 
e7388f6
 
39ee507
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import glob
from itertools import groupby

import cv2
import numpy as np
import gradio as gr
import tensorflow as tf


def get_sample_images():
    list_ = glob.glob(os.path.join(os.path.dirname(__file__), 'samples/*.jpg'))
    return [[i] for i in list_]


def inference(image):
    # load model
    demo = TFliteDemo(os.path.join(os.path.dirname(__file__), 'model.tflite'))
    # load image
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    image = center_fit(image, 128, 64, top_left=True)
    image = np.reshape(image, (1, *image.shape, 1)).astype(np.uint8)
    # inference
    pred = demo.inference(image)
    # decode
    dict = load_dict(os.path.join(os.path.dirname(__file__), 'label.names'))
    res = decode_label(pred, dict)
    return res


class TFliteDemo:
    def __init__(self, model_path):
        self.interpreter = tf.lite.Interpreter(model_path=model_path)
        self.interpreter.allocate_tensors()
        self.input_details = self.interpreter.get_input_details()
        self.output_details = self.interpreter.get_output_details()
    
    def inference(self, x):
        self.interpreter.set_tensor(self.input_details[0]['index'], x)
        self.interpreter.invoke()
        return self.interpreter.get_tensor(self.output_details[0]['index'])


def center_fit(img, w, h, inter=cv2.INTER_NEAREST, top_left=True):
    # get img shape
    img_h, img_w = img.shape[:2]
    # get ratio
    ratio = min(w / img_w, h / img_h)

    if len(img.shape) == 3:
        inter = cv2.INTER_AREA
    # resize img
    img = cv2.resize(img, (int(img_w * ratio), int(img_h * ratio)), interpolation=inter)
    # get new img shape
    img_h, img_w = img.shape[:2]
    # get start point
    start_w = (w - img_w) // 2
    start_h = (h - img_h) // 2

    if top_left:
        start_w = 0
        start_h = 0

    if len(img.shape) == 2:
        # create new img
        new_img = np.zeros((h, w), dtype=np.uint8)
        new_img[start_h:start_h+img_h, start_w:start_w+img_w] = img
    else:
        new_img = np.zeros((h, w, 3), dtype=np.uint8)
        new_img[start_h:start_h+img_h, start_w:start_w+img_w, :] = img

    return new_img


def load_dict(dict_path='label.names'):
    with open(dict_path, 'r', encoding='utf-8') as f:
        dict = f.read().splitlines()
    dict = {i: dict[i] for i in range(len(dict))}
    return dict


def decode_label(mat, chars) -> str:
    # mat is the output of model
    # get char indices along best path
    best_path_indices = np.argmax(mat[0], axis=-1)
    # collapse best path (using itertools.groupby), map to chars, join char list to string
    best_chars_collapsed = [chars[k] for k, _ in groupby(best_path_indices) if k != len(chars)]
    res = ''.join(best_chars_collapsed)
    # remove space and '_'
    res = res.replace(' ', '').replace('_', '')
    return res

_TITLE = '''South Korean License Plate Recognition'''
_DESCRIPTION = '''
<div>
<p style="text-align: center; font-size: 1.3em">This is a demo of South Korean License Plate Recognition.
<a style="display:inline-block; margin-left: .5em" href='https://github.com/noahzhy/KR_LPR_TF/'><img src='https://img.shields.io/github/stars/noahzhy/KR_LPR_TF?style=social' /></a>
</p>
</div>
'''
interface = gr.Interface(
    fn=inference,
    inputs="image",
    outputs="text",
    title=_TITLE,
    description=_DESCRIPTION,
    examples=get_sample_images(),
)
interface.launch()