Spaces:
Sleeping
Sleeping
update
Browse files
rag.py
CHANGED
@@ -1,63 +1,12 @@
|
|
1 |
from langchain.embeddings import HuggingFaceEmbeddings
|
2 |
-
from langchain.vectorstores import Chroma
|
3 |
-
from langchain.document_loaders import TextLoader, DirectoryLoader
|
4 |
-
import os
|
5 |
-
import re
|
6 |
-
from sentence_transformers.cross_encoder import CrossEncoder
|
7 |
-
import numpy as np
|
8 |
-
from langchain.schema.retriever import BaseRetriever, Document
|
9 |
-
from typing import List
|
10 |
-
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
11 |
-
from langchain.vectorstores import VectorStore
|
12 |
-
from llm import URALLM
|
13 |
from langchain.prompts import PromptTemplate
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# Tìm kiếm các từ khóa liên quan đến vai trò học viên trong document.
|
21 |
-
keywords = [
|
22 |
-
"sinh viên",
|
23 |
-
"đại học",
|
24 |
-
"học viên",
|
25 |
-
"thạc sĩ",
|
26 |
-
"nghiên cứu sinh",
|
27 |
-
"tiến sĩ",
|
28 |
-
]
|
29 |
-
role = []
|
30 |
-
for keyword in keywords:
|
31 |
-
if keyword in document.metadata['source'].lower():
|
32 |
-
role.append(keyword)
|
33 |
-
return ", ".join(role)
|
34 |
-
|
35 |
-
def processing_data(data_path):
|
36 |
-
folders = os.listdir(data_path)
|
37 |
-
|
38 |
-
dir_loaders = []
|
39 |
-
|
40 |
-
# Add the documents to the project
|
41 |
-
for folder in folders:
|
42 |
-
dir_loader = DirectoryLoader((os.path.join(data_path, folder)), loader_cls=TextLoader)
|
43 |
-
dir_loaders.append(dir_loader)
|
44 |
-
|
45 |
-
# Load the text files.
|
46 |
-
loaded_documents = []
|
47 |
-
for dir_loader in dir_loaders:
|
48 |
-
loaded_documents.append(dir_loader.load())
|
49 |
-
|
50 |
-
data = []
|
51 |
-
for i in range(len(loaded_documents)):
|
52 |
-
for j in range(len(loaded_documents[i])):
|
53 |
-
data.append(loaded_documents[i][j])
|
54 |
-
|
55 |
-
# Final data prepare for vector database
|
56 |
-
for document in data:
|
57 |
-
role = get_role(document)
|
58 |
-
document.metadata['role'] = role
|
59 |
-
|
60 |
-
return data
|
61 |
|
62 |
# Embedding model
|
63 |
embedding = HuggingFaceEmbeddings(
|
@@ -65,96 +14,200 @@ embedding = HuggingFaceEmbeddings(
|
|
65 |
model_kwargs={"device": "cpu"}
|
66 |
)
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
# model_kwargs={"device": "cpu"}
|
71 |
-
# )
|
72 |
-
|
73 |
-
# Vector database
|
74 |
-
data_path = 'raw_data'
|
75 |
-
persist_directory = 'vector_db'
|
76 |
-
vectordb = Chroma.from_documents(
|
77 |
-
documents=processing_data(data_path),
|
78 |
-
embedding=embedding,
|
79 |
-
persist_directory=persist_directory
|
80 |
-
)
|
81 |
|
82 |
-
|
83 |
-
vectorstores:Chroma
|
84 |
-
retriever:vectordb.as_retriever()
|
85 |
|
86 |
-
|
87 |
-
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
88 |
-
) -> List[Document]:
|
89 |
-
# Use your existing retriever to get the documents
|
90 |
-
documents = self.retriever.get_relevant_documents(query, callbacks=run_manager.get_child())
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
docs_content.append(documents[i].page_content)
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
similarity_scores = model.predict(sentence_combinations)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
llm = URALLM()
|
118 |
-
custom_retriever = CustomRetriever(vectorstores = vectordb,retriever = vectordb.as_retriever(search_kwargs={"k": 50}))
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
|
132 |
-
Văn bản: {context}
|
133 |
Câu hỏi: {question}
|
|
|
134 |
Câu trả lời:
|
135 |
-
|
136 |
-
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
def rag(question: str) -> str:
|
156 |
-
# call QA chain
|
157 |
-
response = qa_chain({"query": question})
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
|
|
1 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from langchain.prompts import PromptTemplate
|
3 |
+
from utility import load_data, process_data, CustomRetriever
|
4 |
|
5 |
+
|
6 |
+
data1 = load_data('raw_data/sv')
|
7 |
+
data2 = load_data('raw_data/thacsi')
|
8 |
+
data3 = load_data('raw_data/tiensi')
|
9 |
+
data = data1 + data2 + data3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Embedding model
|
12 |
embedding = HuggingFaceEmbeddings(
|
|
|
14 |
model_kwargs={"device": "cpu"}
|
15 |
)
|
16 |
|
17 |
+
# The splitter to use to create smaller chunks
|
18 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
|
|
|
|
|
21 |
|
22 |
+
#####################################################################
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
vectorstore1, retriever1 = process_data(data, child_text_splitter, embedding, "data")
|
25 |
+
vectorstore2, retriever2 = process_data(data2, child_text_splitter, embedding, "data2")
|
26 |
+
vectorstore3, retriever3 = process_data(data3, child_text_splitter, embedding, "data3")
|
|
|
27 |
|
28 |
+
##############################################################################
|
29 |
|
30 |
+
ANYSCALE_API_BASE = "credential-1711634141163"
|
31 |
+
ANYSCALE_API_KEY = "esecret_chitz7splr5ut6vfvqpn72itd3"
|
32 |
+
ANYSCALE_MODEL_NAME = "meta-llama/Meta-Llama-3-8B-Instruct"
|
33 |
+
# ANYSCALE_MODEL_NAME = "meta-llama/Llama-3-8b-chat-hf"
|
34 |
+
# ANYSCALE_MODEL_NAME = "google/gemma-7b-it"
|
35 |
+
# ANYSCALE_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
|
36 |
+
# ANYSCALE_MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
37 |
|
38 |
+
import os
|
|
|
39 |
|
40 |
+
os.environ["ANYSCALE_API_BASE"] = ANYSCALE_API_BASE
|
41 |
+
os.environ["ANYSCALE_API_KEY"] = ANYSCALE_API_KEY
|
42 |
|
43 |
+
from langchain.chains import LLMChain
|
44 |
+
from langchain_community.llms import Anyscale
|
45 |
+
from langchain_core.prompts import PromptTemplate
|
46 |
+
from langchain_community.chat_models import ChatAnyscale
|
47 |
|
48 |
+
# llm = Anyscale(model_name=ANYSCALE_MODEL_NAME)
|
49 |
+
llm= ChatAnyscale(model_name=ANYSCALE_MODEL_NAME, temperature=0)
|
50 |
|
51 |
+
#####################################################################
|
|
|
|
|
|
|
52 |
|
53 |
+
from langchain_openai.llms.azure import AzureOpenAI
|
54 |
+
llm_openai = AzureOpenAI(
|
55 |
+
deployment_name="gpt-35-turbo-instruct",
|
56 |
+
# deployment_name="gpt-35-turbo-16k",
|
57 |
+
api_key = 'c90c0e7fb1894a898c56123580a6ee3e',
|
58 |
+
api_version = "2023-09-15-preview",
|
59 |
+
azure_endpoint = "https://bkchatbot.openai.azure.com/",
|
60 |
+
temperature=0.0,
|
61 |
+
max_tokens=500
|
62 |
+
)
|
63 |
+
|
64 |
+
##########################################################################
|
65 |
+
|
66 |
+
from langchain_core.output_parsers import StrOutputParser
|
67 |
+
from langchain_core.runnables import RunnablePassthrough
|
68 |
|
69 |
+
def format_docs(docs):
|
70 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
71 |
+
|
72 |
+
# Build prompt
|
73 |
+
from langchain.prompts import PromptTemplate
|
74 |
+
template ="""
|
75 |
+
Trả lời câu hỏi dựa trên những quy định được cung cấp, tổng hợp thông tin và đưa ra câu trả lời ngắn gọn và đầy đủ cuối cùng.
|
76 |
+
Không cần ghi chú và trích dẫn nguồn thông tin đã tham khảo trong câu trả lời.
|
77 |
+
Câu trả lời nên bắt đầu bằng: "Theo quy định của Trường ĐH Bách Khoa Tp.HCM, ..."
|
78 |
+
Nếu trong quy văn bản không có thông tin cho câu trả lời, vui lòng thông báo: "Xin lỗi, tôi không có thông tin cho câu hỏi này!"
|
79 |
|
80 |
+
Quy định: {context}
|
81 |
|
|
|
82 |
Câu hỏi: {question}
|
83 |
+
|
84 |
Câu trả lời:
|
85 |
+
"""
|
86 |
+
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template)
|
87 |
+
|
88 |
+
#############################################################################
|
89 |
+
|
90 |
+
from langchain_core.runnables import RunnableParallel
|
91 |
+
|
92 |
+
rag_chain_from_docs = (
|
93 |
+
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
|
94 |
+
| QA_CHAIN_PROMPT
|
95 |
+
| llm
|
96 |
+
| StrOutputParser()
|
97 |
+
)
|
98 |
+
|
99 |
+
###############################################################################
|
100 |
+
|
101 |
+
from langchain.prompts import ChatPromptTemplate
|
102 |
+
|
103 |
+
# Multi Query: Different Perspectives
|
104 |
+
template = """
|
105 |
+
### Hãy tạo ra thêm các truy vấn tìm kiếm tương đương ngữ nghĩa với một câu hỏi ban đầu.
|
106 |
+
Kết quả hiển thị dạng list gồm câu hỏi ban đầu và 2 câu hỏi thay thế.
|
107 |
+
|
108 |
+
### Câu hỏi ban đầu: {question}
|
109 |
+
### Kết quả:
|
110 |
+
|
111 |
+
"""
|
112 |
+
prompt_perspectives = ChatPromptTemplate.from_template(template)
|
113 |
+
|
114 |
+
from langchain_core.output_parsers import StrOutputParser
|
115 |
+
# from langchain_openai import ChatOpenAI
|
116 |
+
|
117 |
+
generate_queries = (
|
118 |
+
prompt_perspectives
|
119 |
+
| llm_openai
|
120 |
+
| StrOutputParser()
|
121 |
+
| (lambda x: x.split("\n"))
|
122 |
+
)
|
123 |
+
|
124 |
+
#########################################################################################
|
125 |
+
|
126 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
127 |
+
|
128 |
+
# initialize the bm25 retriever and chroma retriever
|
129 |
+
bm25_retriever1 = BM25Retriever.from_documents(data, k=25)
|
130 |
+
ensemble_retriever1 = EnsembleRetriever(retrievers=[bm25_retriever1, retriever1], weights=[0.5, 0.5])
|
131 |
+
|
132 |
+
bm25_retriever2 = BM25Retriever.from_documents(data2, k=25)
|
133 |
+
ensemble_retriever2 = EnsembleRetriever(retrievers=[bm25_retriever2, retriever2], weights=[0.5, 0.5])
|
134 |
+
|
135 |
+
bm25_retriever3 = BM25Retriever.from_documents(data3, k=25)
|
136 |
+
ensemble_retriever3 = EnsembleRetriever(retrievers=[bm25_retriever3, retriever3], weights=[0.5, 0.5])
|
137 |
+
|
138 |
+
#########################################################################################
|
139 |
+
|
140 |
+
custom_retriever1 = CustomRetriever(retriever = ensemble_retriever1)
|
141 |
+
custom_retriever2 = CustomRetriever(retriever = ensemble_retriever2)
|
142 |
+
custom_retriever3 = CustomRetriever(retriever = ensemble_retriever3)
|
143 |
+
|
144 |
+
multiq_chain1 = generate_queries | custom_retriever1
|
145 |
+
multiq_chain2 = generate_queries | custom_retriever2
|
146 |
+
multiq_chain3 = generate_queries | custom_retriever3
|
147 |
+
|
148 |
+
rag_chain_with_source1 = RunnableParallel(
|
149 |
+
{"context": multiq_chain1, "question": RunnablePassthrough()}
|
150 |
+
).assign(answer=rag_chain_from_docs)
|
151 |
+
|
152 |
+
rag_chain_with_source2 = RunnableParallel(
|
153 |
+
{"context": multiq_chain2 , "question": RunnablePassthrough()}
|
154 |
+
).assign(answer=rag_chain_from_docs)
|
155 |
+
|
156 |
+
rag_chain_with_source3 = RunnableParallel(
|
157 |
+
{"context": multiq_chain3, "question": RunnablePassthrough()}
|
158 |
+
).assign(answer=rag_chain_from_docs)
|
159 |
+
|
160 |
+
############################################################################################
|
161 |
+
|
162 |
+
from flashtext import KeywordProcessor
|
163 |
+
keyword_processor = KeywordProcessor()
|
164 |
+
# keyword_processor.add_keyword(<unclean name>, <standardised name>)
|
165 |
+
keyword_processor.add_keyword('thạc sĩ')
|
166 |
+
keyword_processor.add_keyword('học viên')
|
167 |
+
keyword_processor.add_keyword('nghiên cứu sinh')
|
168 |
+
keyword_processor.add_keyword('tiến sĩ')
|
169 |
+
|
170 |
+
################################################################################
|
171 |
+
|
172 |
+
rag_chain = [rag_chain_with_source1, rag_chain_with_source2, rag_chain_with_source3]
|
173 |
+
|
174 |
+
###################################################################################
|
175 |
|
176 |
def rag(question: str) -> str:
|
|
|
|
|
177 |
|
178 |
+
keywords_found = keyword_processor.extract_keywords(question)
|
179 |
+
if 'thạc sĩ' in keywords_found or 'học viên' in keywords_found:
|
180 |
+
response = rag_chain[1].invoke(question)
|
181 |
+
elif 'nghiên cứu sinh' in keywords_found or 'tiến sĩ' in keywords_found:
|
182 |
+
response = rag_chain[2].invoke(question)
|
183 |
+
else:
|
184 |
+
response = rag_chain[0].invoke(question)
|
185 |
+
|
186 |
+
return response['answer']
|
187 |
+
|
188 |
+
###################################################################################
|
189 |
+
|
190 |
+
|
191 |
+
# # Run chain
|
192 |
+
# from langchain.chains import RetrievalQA
|
193 |
+
|
194 |
+
# qa_chain = RetrievalQA.from_chain_type(llm,
|
195 |
+
# verbose=False,
|
196 |
+
# # retriever=vectordb.as_retriever(),
|
197 |
+
# retriever=custom_retriever,
|
198 |
+
# return_source_documents=True,
|
199 |
+
# chain_type_kwargs={"prompt": QA_CHAIN_PROMPT})
|
200 |
+
|
201 |
+
# def remove_special_characters(text):
|
202 |
+
# text = text.replace('].', '')
|
203 |
+
# text = text.replace('/.', '')
|
204 |
+
# text = text.replace('/.-', '')
|
205 |
+
# text = text.replace('-', '')
|
206 |
+
# return text
|
207 |
+
|
208 |
+
# def rag(question: str) -> str:
|
209 |
+
# # call QA chain
|
210 |
+
# response = qa_chain({"query": question})
|
211 |
+
|
212 |
+
# return remove_special_characters(response["result"])
|
213 |
|