Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from streamlit_extras.stylable_container import stylable_container
|
4 |
+
import time
|
5 |
+
import zipfile
|
6 |
+
import io
|
7 |
+
import nltk
|
8 |
+
nltk.download('punkt_tab')
|
9 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
10 |
+
from transformers import pipeline
|
11 |
+
import re
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
with st.sidebar:
|
16 |
+
with stylable_container(
|
17 |
+
key="test_button",
|
18 |
+
|
19 |
+
css_styles="""
|
20 |
+
button {
|
21 |
+
background-color: #0000ff;
|
22 |
+
border: none;
|
23 |
+
color: white;
|
24 |
+
}
|
25 |
+
""",
|
26 |
+
):
|
27 |
+
st.button("FREE PLAN")
|
28 |
+
|
29 |
+
|
30 |
+
st.subheader("Glossary of tags", divider = "red")
|
31 |
+
|
32 |
+
|
33 |
+
per = st.checkbox("I")
|
34 |
+
if per:
|
35 |
+
st.write("Person's name")
|
36 |
+
|
37 |
+
org = st.checkbox("ORG")
|
38 |
+
if org:
|
39 |
+
st.write("Organization")
|
40 |
+
|
41 |
+
loc = st.checkbox("LOC")
|
42 |
+
if loc:
|
43 |
+
st.write("Location")
|
44 |
+
|
45 |
+
PER = st.checkbox("B-PER")
|
46 |
+
if PER:
|
47 |
+
st.write("Beginning of a person’s name right after another person’s name")
|
48 |
+
|
49 |
+
ORG = st.checkbox("B-ORG")
|
50 |
+
if ORG:
|
51 |
+
st.write("Beginning of an organisation right after another organization")
|
52 |
+
|
53 |
+
LOC = st.checkbox("B-LOC")
|
54 |
+
if LOC:
|
55 |
+
st.write("Beginning of a location right after another location")
|
56 |
+
|
57 |
+
O = st.checkbox("O")
|
58 |
+
if O:
|
59 |
+
st.write("Outside of a named entity")
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
st.subheader("Multilingual AI Entity Extractor with :blue[Transformers]")
|
69 |
+
st.write("Supported languages: **Arabic, German, English, Spanish, French, Italian, Latvian, Dutch, Portuguese, Chinese**")
|
70 |
+
st.divider()
|
71 |
+
|
72 |
+
|
73 |
+
def clear_text():
|
74 |
+
st.session_state["text"] = ""
|
75 |
+
|
76 |
+
text = st.text_input("Paste your text here and then press **enter**. The length of your text should not exceed 2000 words.", key="text")
|
77 |
+
st.button("Clear text", on_click=clear_text)
|
78 |
+
st.write(text)
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
from nltk.tokenize import word_tokenize
|
83 |
+
|
84 |
+
text1 = re.sub(r'[^\w\s]','',text)
|
85 |
+
tokens = word_tokenize(text1)
|
86 |
+
st.write("Length", len(tokens))
|
87 |
+
st.divider()
|
88 |
+
|
89 |
+
number = 2000
|
90 |
+
|
91 |
+
if text is not None and len(tokens) > number:
|
92 |
+
st.warning('The length of your text should not exceed 2000 words.')
|
93 |
+
st.stop()
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
if text is not None:
|
98 |
+
tokenizer = AutoTokenizer.from_pretrained("sgarbi/bert-fda-nutrition-ner")
|
99 |
+
model = AutoModelForTokenClassification.from_pretrained("sgarbi/bert-fda-nutrition-ner")
|
100 |
+
nlp = pipeline("token-classification", model=model, tokenizer=tokenizer)
|
101 |
+
ner_results = nlp(text)
|
102 |
+
df = pd.DataFrame(ner_results)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
import zipfile
|
107 |
+
import io
|
108 |
+
|
109 |
+
dfa = pd.DataFrame(
|
110 |
+
data = {
|
111 |
+
'I': ['Person'],
|
112 |
+
'ORG': ['Organization'],
|
113 |
+
'LOC': ['Location'],
|
114 |
+
'B-PER': ['Beginning of a person’s name right after another person’s name'],
|
115 |
+
'B-ORG': ['Beginning of an organisation right after another organization '],
|
116 |
+
'B-LOC': ['Beginning of a location right after another location'],
|
117 |
+
'O': ['Outside of a named entity ']
|
118 |
+
|
119 |
+
|
120 |
+
}
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
buf = io.BytesIO()
|
128 |
+
|
129 |
+
with zipfile.ZipFile(buf, "x") as myzip:
|
130 |
+
if text is not None:
|
131 |
+
myzip.writestr("Summary of the results.csv", df.to_csv())
|
132 |
+
|
133 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv())
|
134 |
+
|
135 |
+
|
136 |
+
tab1, tab2 = st.tabs(["Summarize", "Download"])
|
137 |
+
|
138 |
+
|
139 |
+
with tab1:
|
140 |
+
if text is not None:
|
141 |
+
st.dataframe(df, width = 1000)
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
with tab2:
|
146 |
+
st.download_button(
|
147 |
+
label = "Download zip file",
|
148 |
+
data=buf.getvalue(),
|
149 |
+
file_name="zip file.zip",
|
150 |
+
mime="application/zip",
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|